scholarly journals Improving the unit for melting cheese masses

2021 ◽  
Vol 6 (11 (114)) ◽  
pp. 99-105
Author(s):  
Mariana Bondar ◽  
Oksana Skoromna ◽  
Nataliia Ponomarenko ◽  
Hennadii Tesliuk ◽  
Iryna Honcharova ◽  
...  

This paper reports the improved model of the unit for melting cheese masses. The device differs in the technique of heat supply to working tanks through the replacement of a steam jacket with heating by a flexible film resistive electric heater of radiative type (FFREhRT). The heat exchange surface of the working container was increased through heating the mixing device by FFREhRT. In addition, the unit is distinguished by utilizing secondary thermal energy of melting cheese masses (35...95 °C) by converting it with Peltier elements into a low-voltage power supply to autonomous fans (3.5...12 W) in order to cool the control unit. Such a solution would improve the efficiency of the proposed structure, which is explained by reducing the dimensional and weight parameters of the cheese melting unit by replacing the steam heating technique with an electric one. A decrease in the time to enter a stationary mode (85 °C) when melting cheese masses was experimentally confirmed: for the bowl of the examined unit ‒ 575 s, compared to the analog ‒ 725 s. That confirms the reduction in the time to enter a stationary mode by 21 % compared to the base unit B6-OPE-400. The estimation has established a 1.2-time decrease in the main indicator of resource efficiency of the specific energy consumption for heating the volume of a unit of product in the improved plant for melting cheese masses – 3,037.2 kJ/kg, compared to the base B6-OPE-400 – 3,672.5 kJ/kg. The results confirm an increase in resource efficiency that is achieved by the elimination of steam heat networks; the increased heat exchange surface of working bowls by heating the stirrer with the help of FFREhRT. The heat transfer that employs FFREhRT simplifies the operational indicators of the temperature stabilization system in the bowl of the cheese mass melting unit. The results reported here may prove useful when designing thermal equipment with electric heating while using secondary thermal energy.

1982 ◽  
Vol 47 (2) ◽  
pp. 430-445
Author(s):  
Josef Horák ◽  
Zina Valášková

An algorithm has been developed and on a mathematical model analyzed to stabilize the reaction temperature of a batch reactor. The reaction has been a zero-order one and the reactor has been operated in a instable operating point. The action variable is the heat exchange surface whose area is increased if the temperature is above, or decreased if the temperature is below the set point. The following two-point regulators have been studied: An ideal relay, a relay with hysteresis and an asymmetric PD relay. The effect has been discussed of the parameters of the regulators on the quality of regulation. Stability analysis has been made of the stationary switching cycles and the domains of applicability have been determined for individual regulators with respect to the rate of change of the area of heat exchange surface.


Author(s):  
Andrei A. Akhremenkov ◽  
Anatoliy M. Tsirlin ◽  
Vladimir Kazakov

In this paper we consider heat exchange system from point of view of Finite-time thermodynamics. At first time the novel estimate of the minimal entropy production in a general-type heat exchange system with given heat load and fixed heat exchange surface is derived. The corresponding optimal distribution of heat exchange surface and optimal contact temperatures are also obtained. It is proven that if a heat flow is proportional to the difference of contacting flows’ temperatures then dissipation in a multi-flow heat exchanger is minimal only if the ratio of contact temperatures of any two flows at any point inside heat exchanger is the same and the temperatures of all heating flows leaving exchanger are also the same. Our result based on those assumptions: 1. heat transfer law is linear (17); 2. summary exchange surface is given; 3. heat load is given; 4. input tempretures for all flows are given; 5. water equivalents for all flows are given.


Author(s):  
Krzysztof Bernard Łukaszewski

The aim of the article is to demonstrate the relationship between the adaptive regulation of the heat exchange surface to specific operating conditions of a steam turbine condenser and the reliability and availability of this surface in a specific period of time. The article exemplifies the relationship between the settings of the condenser heat exchange surface and the resulting changes in the reliability structures of this surface. The method of creating a mathematical model of reliability estimation, which is characterized by the variability of the reliability structures of the heat exchange surface in relation to specific operating conditions in a specific period of time, was indicated. Then, exemplary simulations of the adaptation of reliability structures of specific pipe systems constituting the condenser’s heat exchange surface to specific processes of operation of this condenser are presented. The simulations refer to the time-varying thermal loads of the condenser, the time-varying mean thickness of the sediments, and changes in the temperature of the cooling water at the point of its intake over time. The adaptation of certain reliability structures consists in the adaptation of specific systems of pipes through which the cooling water flows to the currently existing operating conditions of the condenser in order to maintain the desired reliability of the heat exchange surface for a specified time. This is done by enabling or disabling the flow of cooling water through a given number of pipes in specific systems under given operating conditions. On the basis of computer simulations, the reliability functions, and the availability functions of the subsystem under consideration were estimated.


2018 ◽  
Vol 170 ◽  
pp. 03024
Author(s):  
Larisa Haritonova ◽  
Valery Azarov ◽  
Igor Stefanenko

The article is devoted to the development of the general aerodynamic theory in case of a leakage by the systems of plane-parallel impact jets on the plane heat exchange surface [1-2]. An analytical generalization of data on aerodynamic resistance with the blowout of flat surface by the system of the plane-parallel impact jets was implemented. These data were obtained as a result of the application of mathematical theory of planning an experiment. The equations of regression are the mathematical model of process. Functional dependences between the constructive factors and the regime parameters of these first obtained experimental dependences on aerodynamic resistance in the jet heat exchangers with the leakage of air in the form of the system of plane-parallel jets were established. Results of work can be used in developing of different methods of calculation for various new designs of highly effective heat exchangers or their optimization for various branches.


1972 ◽  
Vol 8 (10) ◽  
pp. 903-904
Author(s):  
V. I. Ushakov ◽  
B. N. Sopin ◽  
A. A. Glushakov

2019 ◽  
Vol 16 (11) ◽  
pp. 4554-4559 ◽  
Author(s):  
Valeriya Leonidovna Vorontsova ◽  
Alfiya Gizzetdinovna Bagoutdinova ◽  
Almaz Fernandovich Gilemzianov

One of the ways to intensify heat exchange processes is the creation of compact heat exchangers with a developed heat exchange surface. It is known that coil-type channels provide a developed heat exchange surface and belong to one of the most efficient and technological designs of heat exchange elements. In this regard, the authors proposed a small-size heat exchanger of the “pipe in pipe” type with an internal coil spring-twisted channel, and the authors of the proposed article developed mathematical models describing the heat-exchange surfaces of pipes of complex configurations, including coil spring-coiled channels. The equations of heat transfer surfaces are written in vector-parametric form based on the fundamental principles of analytical and differential geometry. In order to verify the adequacy and visualization of the written equations, surfaces were constructed using the Matlab application software package. The proposed mathematical models can be used in computer simulation of hydrodynamic processes during the flow of liquid media in curved channels, which will allow to explore and further optimize their internal geometry by changing the parameters of the equations. This work is a continuation of research on the creation of efficient heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document