scholarly journals Development of object state evaluation method in intelligent decision support systems

2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 54-63
Author(s):  
Yurii Zhuravskyi ◽  
Oleg Sova ◽  
Serhii Korobchenko ◽  
Vitaliy Baginsky ◽  
Yurii Tsimura ◽  
...  

Accurate and objective object analysis requires multi-parameter estimation with significant computational costs. A methodological approach to improve the accuracy of assessing the state of the monitored object is proposed. This methodological approach is based on a combination of fuzzy cognitive models, advanced genetic algorithm and evolving artificial neural networks. The methodological approach has the following sequence of actions: building a fuzzy cognitive model; correcting the fuzzy cognitive model and training knowledge bases. The distinctive features of the methodological approach are that the type of data uncertainty and noise is taken into account while constructing the state of the monitored object using fuzzy cognitive models. The novelties while correcting fuzzy cognitive models using a genetic algorithm are taking into account the type of data uncertainty, taking into account the adaptability of individuals to iteration, duration of the existence of individuals and topology of the fuzzy cognitive model. The advanced genetic algorithm increases the efficiency of correcting factors and the relationships between them in the fuzzy cognitive model. This is achieved by finding solutions in different directions by several individuals in the population. The training procedure consists in learning the synaptic weights of the artificial neural network, the type and parameters of the membership function and the architecture of individual elements and the architecture of the artificial neural network as a whole. The use of the method allows increasing the efficiency of data processing at the level of 16–24 % using additional advanced procedures. The proposed methodological approach should be used to solve the problems of assessing complex and dynamic processes characterized by a high degree of complexity.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammad Mehdi Arab ◽  
Abbas Yadollahi ◽  
Maliheh Eftekhari ◽  
Hamed Ahmadi ◽  
Mohammad Akbari ◽  
...  

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Sign in / Sign up

Export Citation Format

Share Document