scholarly journals Determination of inductances for pulsating current traction motor

2021 ◽  
Vol 2 (1(58)) ◽  
pp. 40-43
Author(s):  
Sergey Goolak ◽  
Viktor Tkachenko ◽  
Svitlana Sapronova ◽  
Oleksandr Spivak ◽  
Ievgen Riabov ◽  
...  

The object of research is a pulsating current traction motor. To improve the accuracy of its mathematical model, it is necessary to use the values of the parameters that are determined in experimental studies of the electric motor. In particular, it is important to use in the model of the electric motor inductance obtained experimentally. A method is proposed for calculating the inductance of the armature winding, main poles, additional poles and compensation winding and the total inductance of the traction motor armature circuit. The calculations are based on the results of the indirect inductance measurement method, in which the electrical values of various modes of power supply of the electric motor windings are directly measured, and the inductances are determined by auxiliary calculations. The inductances of the traction motor armature circuit have a non-linear dependence on the current flowing through them. The main difference of the study is that the measurements of the electrical parameters required for calculating the inductance are carried out over the entire range of operating currents of the windings. The essence of the proposed technique is to measure the active power in the armature winding, the winding of the main and additional poles, and the compensation winding, as well as in the armature circle as a whole when they are supplied with alternating current. According to the obtained values of active power losses and phase displacement, the corresponding reactive power losses are determined, with the help of which the inductances of the motor windings are calculated. Approbation of the methodology for calculating the conduction inductance for an electric motor of a pulsating current NB-418K6 (country of origin Russia), is used on electric locomotives of the VL80T and VL80k series (country of origin Russia). A scheme for measuring electrical parameters necessary for calculating inductance is proposed. The graphical dependences of the inductance on the armature current, built on the basis of calculations, confirmed the hypothesis about the nonlinear dependence of these inductances on the armature current. For further application of the results obtained in the simulation of the operation of the traction electric motor NB-418K6, a polynomial approximation of the total inductance of the armature circuit was performed.

Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


Author(s):  
V. Z. Manusov ◽  
P. V. Matrenin ◽  
E. S. Tretiakova

<p><span lang="EN-US">The article dues to the arrangement of the reactive power sources in the power grid to reduce the active power losses in transmission lines and minimize cable cross-sections of the lines. The optimal arrangement is considered from two points of view. In the first case, it is possible to minimize the active power losses only. In the second case, it is possible to change the cross-sections of the supply lines to minimize both the active power losses and the volume of the cable lines. The sum of the financial cost of the active power losses, the capital investment to install the deep reactive power compensation, and cost of the cable volume is introduced as the single optimization criterion. To reduce the losses, the deep compensation of reactive power sources in nodes of the grid are proposed. This optimization problem was solved by the Genetic algorithm and the Particle Swarm optimization algorithm. It was found out that the deep compensation allows minimizing active power losses the cable cross-section. The cost-effectiveness of the suggested method is shown. It was found out that optimal allocation of the reactive power sources allows increasing from 9% to 20% the financial expenses for the enterprise considered.</span></p>


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2283
Author(s):  
Atif Naveed Khan ◽  
Kashif Imran ◽  
Muhammad Nadeem ◽  
Anamitra Pal ◽  
Abraiz Khattak ◽  
...  

Flexible AC Transmission Systems (FACTS) are essential devices used for the efficient performance of modern power systems and many developing countries lack these devices. Due to the non-existence of these advanced technologies, the national grid remains weak and vulnerable to power stability issues that can jeopardize system stability. This study proposes novel research to solve issues of an evolving national grid through the installation of FACTS devices. FACTS devices play a crucial role in minimizing active power losses while managing reactive power flows to keep the voltages within their respective limits. Due to the high costs of FACTS, optimization must be done to discover optimal locations as well as ratings of these devices. However, due to the nonlinearity, it is a challenging task to find the optimal locations and appropriate sizes of these devices. Shunt VARs Compensators (SVCs) and Thyristor-Controlled Series Compensators (TCSCs) are the two FACTS devices considered for the study. Optimal locations for SVCs and TCSCs are determined by Voltage Collapse Proximity Index (VCPI) and Line Stability Index (Lmn), respectively. Particle Swarm Optimization (PSO) is employed to find the ideal rating for FACTS devices to minimize the system operating cost (cost due to active power loss and capital cost of FACTS devices). This technique is applied to IEEE (14 and 30) bus systems. Moreover, reliable operation of the electricity grid through the placement of FACTS for developing countries has also been analysed; Pakistan being a developing country has been selected as a case study. The planning problem has been solved for the present as well as for the forecasted power system. Consequently, in the current national network, 6.21% and 6.71% reduction in active and reactive power losses have been observed, respectively. Moreover, voltage profiles have been improved significantly. A detailed financial analysis covering the calculation of Operation Cost (OC) of the national grid before and after the placement of FACTS devices is carried out.


2020 ◽  
Vol 220 ◽  
pp. 01015
Author(s):  
E.V. Tumaeva ◽  
S.S . Kuzin ◽  
I.F. Aflyatunov ◽  
T.G. Makuseva

Residential and industrial buildings with large territorial dimensions, have mainly radial power supply schemes, which feed a large number of small and medium capacity 0.4 kV induction motors. For their power supply copper or aluminum cables of small cross-section (with high active resistance) are used. Calculations of electricity losses in such lines show significant values. In order to reduce active power losses in 0.4 kV cable lines, the optimization problem of minimizing active power losses in the radial power supply circuit is solved by optimal distribution of reactive power of a given value between compensating devices. The single-line scheme of power supply of a group of pumps of technological installation of petrochemical production is considered, the mathematical model of the optimization problem on criterion of minimum of active losses in power lines from reactive power flow is made, which limitations are presented as a system of linear algebraic equations. Results of distribution of optimum values of reactive power between compensating devices of asynchronous motors at maintenance of the set tg φ are received. The quantitative estimation of active power loss reduction in power lines at use of capacitor units, which reactive power is optimally distributed, is given.


2018 ◽  
Vol 215 ◽  
pp. 01040
Author(s):  
Dasman Dasman

In the distribution of electrical energy from the plant to the consumer, there is a decrease in quality due to the loss of power (losses). These power losses are caused by a voltage drop across the line and subsequently producing a power loss on the line. This power loss can be classified into two types based on its line parameters, i.e., active power loss and reactive power loss. The line’s active power loss generates losses of power/losses so that the active power reaches the load on the receiving end is always less than the productive power of the sender side. Power losses in the electrical system must exist and cannot be reduced to 0% (zero percent). According to SPLN No. 72 of 1987, the permitted distribution network’s power loss should not be higher than 10%. This paper investigates the magnitude of the voltage loss and the line active power losses on the 20 kV distribution line. The calculation conducted through case study and simulation of Etap 12.6 program on an electrical power distribution system that is 20 kV distribution line in PT. PLN (Persero) Rayon Muara Labuh. In the distribution line 20 kV, there is IPP (Independent Power Plant) PLTMH PT SKE used to improve the stress conditions in Rayon Muara Labuh. Therefore the loss of power will be calculated in 3 terms, i.e., before and after IPP PT. SKE with 20 kV distribution lines as well as on feeder load maintenance (as a repair action plan). The simulation results show the highest voltage drop and the highest power losses continue generated during IPP. PT SKE has not done synchronized with the distribution line of 20 kV with a significant voltage drop of 1,533 kV percentage of 7.93% and power loss of 777.528 kWh percentage of 7.69%.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450144 ◽  
Author(s):  
M. VIJAYAKUMAR ◽  
S. VIJAYAN

This paper proposes a photovoltaic (PV)-based three-phase four-wire (3P4W) series hybrid active power filter (SHAPF) it comprises of a series active power filter (SAPF) and an LC shunt passive filter. The proposed system eliminates both the current and voltage harmonics and compensates reactive power, neutral current and voltage interruption. A SAPF demands a source of energy for compensating the voltage sag/swell. This system introduces a new topology for SHAPF utilizes the PV with DC–DC boost converter as a source of DC power for SAPF. The compensation current reference evaluation is based on the twin formulation of the vectorial theory of electrical power theorem with fuzzy logic controller (FLC). The PV array/battery managed DC–DC boost converter is employed to step up the voltage to meet the DC bus voltage requirement of the three-leg voltage source inverter (VSI). The foremost benefit of the proposed system is that, it will provide uninterrupted compensation for the whole day. This system utilizes the renewable energy accordingly saves the energy and shares the load during the solar irradiation available. The simulation and experimental studies are carried out to validate the effectiveness of the proposed PV-SHAPF.


Author(s):  
Christophe Bananeza ◽  
Sylvère Mugemanyi ◽  
Théogène Nshimyumukiza ◽  
Jean Marie Vianney Niyodusenga ◽  
Jean De Dieu Munyaneza

The particle swarm optimization (PSO) is a population-based algorithm belonging into metaheuristic algorithms and it has been used since many decades for handling and solving various optimization problems. However, it suffers from premature convergence and it can easily be trapped into local optimum. Therefore, this study presents a new algorithm called multi-mean scout particle swarm optimization (MMSCPSO) which solves reactive power optimization problem in a practical power system. The main objective is to minimize the active power losses in transmission line while satisfying various constraints. Control variables to be adjusted are voltage at all generator buses, transformer tap position and shunt capacitor.  The standard PSO has a better exploitation ability but it has a very poor exploration  ability. Consequently, to maintain the balance between these two abilities during the  search process by helping particles to escape from the local optimum trap, modifications were made where initial population was produced by tent and logistic maps and it was subdividing it into sub-swarms to ensure good distribution of particles within the search space. Beside this, the idle particles (particles unable to improve their personal best) were replaced by insertion of a scout phase inspired from the artificial bee colony in the standard PSO. This algorithm has been applied and tested on IEEE 118-bus system and it has shown a strong performance in terms of active power loss minimization and voltage profile improvement compared to the original PSO Algorithm, whereby the MMSCPSO algorithm reduced the active power losses at 18.681% then the PSO algorithm reduced the active power losses at 15.457%. Hence, the MMSCPSO could be a better solution for reactive power optimization in large-scale power systems.


Author(s):  
V. Z. Manusov ◽  
P. V. Matrenin ◽  
E. S. Tretiakova

<p><span lang="EN-US">The article dues to the arrangement of the reactive power sources in the power grid to reduce the active power losses in transmission lines and minimize cable cross-sections of the lines. The optimal arrangement is considered from two points of view. In the first case, it is possible to minimize the active power losses only. In the second case, it is possible to change the cross-sections of the supply lines to minimize both the active power losses and the volume of the cable lines. The sum of the financial cost of the active power losses, the capital investment to install the deep reactive power compensation, and cost of the cable volume is introduced as the single optimization criterion. To reduce the losses, the deep compensation of reactive power sources in nodes of the grid are proposed. This optimization problem was solved by the Genetic algorithm and the Particle Swarm optimization algorithm. It was found out that the deep compensation allows minimizing active power losses the cable cross-section. The cost-effectiveness of the suggested method is shown. It was found out that optimal allocation of the reactive power sources allows increasing from 9% to 20% the financial expenses for the enterprise considered.</span></p>


2019 ◽  
pp. 41-52
Author(s):  
Nikolaus M. Tana ◽  
Frans Likadja ◽  
Wellem F. Galla

The 20 kV medium Voltage overhead lines of Naioni feeder on PT. PLN (Persero) ULP Kupang system has a feed length of ± 79.825 kms and is the longest of all feeders installed in the ULP Kupang. To minimize the voltage drop and power losses on the Naioni Feeder 20 kV medium Voltage overhead lines (SUTM), network reconfiguration needs to be done including changing the diameter of the conductor, installing a transformer insert and installing a capacitor bank using the help of ETAP software. From the results of the study, before reconfiguration, the voltage drop at the end of the Bus_Trafo KB 082 channel was 0.967 kV and the voltage drop percentage was 4.68% while the total power losses at Naioni Feeder were 20 kV, which were active power losses of 48.062 kW and loss reactive power loss of 25,689 kVAR. Furthermore, after reconfiguring the carrying diameter on the channel that still uses a small diameter of 35 mm2, it will be converted to 70 mm2 on cable 17 that connects the KB 119 Transformer Bus channel to the KB 074 Transformer Bus which is a fairly long distance from all other channels. So that after carrying out the reconfiguration of the conductor diameter, the voltage drop at the end of the Bus Trafo KB 082 channel is 0.844 kV and the voltage drop percentage is 4.24%, while the total power losses in the Naioni Feeder are 20 kV which are active power losses of 41.142 kW and conductor reactive power loss of 25.53 kVAR. Furthermore, after installation of the transformer insert and changing the conductor diameter on cable 17 of 35 mm2 will be changed to 70 mm2 connecting the Transformer Bus Channel KB 119 to the KB 074 Transformer Bus, then the voltage drop at the end of the Bus Trafo KB 082 channel is 0.826 kV and the voltage drop percentage amounting to 4.15% while the total power losses at Naioni Feeder are 20 kV, namely active power losses of39.292 kW and reactive power losses of 24.467 kVAR. And then, if the capacitor bank is installed on the Bus Transformer KB 119 channel bus point to the Bus Trafo KB 074 channel, then the voltage drop at the Bus Trafo KB 082 channel end is 0.891 kV and the voltage drop percentage is 4.47%, while the total power losses are The 20 kV Naioni Feeder is an active power loss of 43.714 kW and a reactive power loss of 22.888 kVAR.


Sign in / Sign up

Export Citation Format

Share Document