scholarly journals Two methods for calculating the stress-strain state of shape memory alloy constructions taking into account tension-compression asymmetry

2020 ◽  
pp. 109-125
Author(s):  
O S Stolbova ◽  
K A Tikhomirova

Two methods for calculating the phase-structural deformations of shape memory alloy (SMA) structures under complex stress conditions are considered. They both are based on the one-dimensional phenomenological model, which is built upon the relationship between the direct transformation and martensitic inelasticity diagrams, which makes it possible to uniformly describe strains in the phase and structural transformations, since both of the strain components are associated with the formation of oriented martensite. The ability of the model to describe a number of basic macromechanical effects caused by martensitic transformations in SMA was shown in our previous work. After the generalization to the case of a complex stress state it can successfully be used for solving certain engineering problems. The generalization of the model can be accomplished in two ways. The first method involves the construction of three-dimensional constitutive relations, proceeding from the previously developed one-dimensional relations and some simplifying hypotheses, and the numerical implementation of these relations by the finite element method. The second is the structural method, applicable to structures, in which the stress-strain state is described by one kinematic and one force parameter. This method suggests the use of structural diagrams of direct transformation and martensitic inelasticity, which are similar to the corresponding material diagrams, but establish the dependence of the phase-structural component of the kinematic parameter on the force parameter (not the dependence of phase-structural strains on the stress). Although the structural method is associated with the necessity to experimentally determine the structural diagrams, it has the advantage of significantly reducing the computational costs. Additionally, the article presents a comparison of two methods for describing the tension-compression asymmetry, and also develops a method taking finite deformations into account.

2021 ◽  
Vol 204 ◽  
pp. 114135
Author(s):  
Xiebin Wang ◽  
Xiayang Yao ◽  
Dominique Schryvers ◽  
Bert Verlinden ◽  
Guilong Wang ◽  
...  

2018 ◽  
Vol 30 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Venkata Siva C Chillara ◽  
Leon M Headings ◽  
Ryohei Tsuruta ◽  
Eiji Itakura ◽  
Umesh Gandhi ◽  
...  

This work presents smart laminated composites that enable morphing vehicle structures. Morphing panels can be effective for drag reduction, for example, adaptive fender skirts. Mechanical prestress provides tailored curvature in composites without the drawbacks of thermally induced residual stress. When driven by smart materials such as shape memory alloys, mechanically-prestressed composites can serve as building blocks for morphing structures. An analytical energy-based model is presented to calculate the curved shape of a composite as a function of force applied by an embedded actuator. Shape transition is modeled by providing the actuation force as an input to a one-dimensional thermomechanical constitutive model of a shape memory alloy wire. A design procedure, based on the analytical model, is presented for morphing fender skirts comprising radially configured smart composite elements. A half-scale fender skirt for a compact passenger car is designed, fabricated, and tested. The demonstrator has a domed unactuated shape and morphs to a flat shape when actuated using shape memory alloys. Rapid actuation is demonstrated by coupling shape memory alloys with integrated quick-release latches; the latches reduce actuation time by 95%. The demonstrator is 62% lighter than an equivalent dome-shaped steel fender skirt.


Author(s):  
Cody Wright ◽  
Onur Bilgen

Shape memory alloy actuators paired in an antagonistic arrangement can be used to produce mechanisms that replicate human biomechanics. To investigate this proposal, the biomechanical articulation of the elbow by means of the biceps brachii muscle are compared with that of a shape memory alloy actuated arm. Initially, the movement of the human arm is modeled as a single degree of freedom rocker-slider mechanism. Using this model, a purely kinematical analysis is performed on the rigid body rocker-slider. Force analysis follows by modeling the muscle as a simple linear spring. Torque, rocking angle, and energy are calculated for a range of rocker-slider geometries. Actuator characterization of the SMA wire is conducted by experimentally determining the stress-strain curves for the martensite detwinned and full austenite states. Using the experimentally obtained stress-strain curves, nonlinear and linear theoretical actuator characteristic curves are produced for the isolated SMA wire. Using the theoretical actuator characteristic curve on the rocker-slider mechanism, kinematic and force analyses are performed for both the nonlinear and linear actuated mechanisms. To compare to biomechanics, a literature survey is performed on human musculotendon and skeletal lengths and introduced to the kinematic analysis. Examination of biological and mechanical results are then discussed.


2012 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Toyohiko Aiki ◽  
◽  
Martijn Anthonissen ◽  
Adrian Muntean ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document