Analysis of a thermally induced phase transformation strain state for the TiNi shape memory alloy under a complex stress state

2002 ◽  
Vol 37 (2) ◽  
pp. 151-161 ◽  
Author(s):  
G Socha ◽  
L Dietrich
2011 ◽  
Vol 142 ◽  
pp. 138-141 ◽  
Author(s):  
Bo Zhou ◽  
Xiao Gang Guo ◽  
Gang Ling Hou ◽  
Xu Kun Li

In this paper a phase transformation equation is supposed to describe the phase transformation behaviors of the shape memory alloy (SMA) under complex stress state. The stress field near crack-tip of mode I in SMA at various temperatures is investigated based on the supposed phase transformation equation and linear elastic fracture mechanics. Results show both the martensite region and the mixed region of martensite and austenite near the crack-tip become larger with the decrease of temperature. The fracture mechanics behaviors of SMA are much influenced by the temperature.


2011 ◽  
Vol 148-149 ◽  
pp. 875-878
Author(s):  
Bo Zhou ◽  
Jun Lv ◽  
Gang Ling Hou ◽  
Ya Ru Pan

In this paper, the phase transformation behaviors of shape memory alloy (SMA) in the complex stress state are formulated based the one-dimensional phase transformation model supposed by Zhou and Yoon. The stress field near the crack tip of mode II in SMA is described based on linear elastic fracture mechanics. The phase transformation behaviors of SMA near the crack tip of Mode II are numerically investigated.


2012 ◽  
Vol 457-458 ◽  
pp. 994-997
Author(s):  
Bo Zhou ◽  
Xu Kun Li ◽  
Gang Ling Hou

This paper focuses on the thermo-mechanical behaviors of a shape memory alloy (SMA) plate with a circular hole under biaxial uneven tension. The phase transformation behaviors of SMA under complex stress state are formulated based on the one-dimensional phase transformation model developed by Zhou and Yoon. The stress field equation of the SMA plate with a circular hole is derived according to linear elastic mechanics. The phase transformation behaviors near the region around the circular hole are numerically simulated under different conditions of applied stress.


2012 ◽  
Vol 457-458 ◽  
pp. 744-747
Author(s):  
Bo Zhou ◽  
Yan Yan Hou ◽  
Jun Lv

This paper focuses on the thermo-mechanical behaviors of a shape memory alloy (SMA) plate with a crack of mode I. A phase transformation equation is supposed to express the phase transformation behaviors of SMA under complex stress state. The stress field near the crack tip is described based on linear elastic mechanics. The martensitic phase transformation zones near the crack tip at various temperatures are numerically determined.


2013 ◽  
Vol 738-739 ◽  
pp. 82-86 ◽  
Author(s):  
Thomas Niendorf ◽  
Jayaram Dadda ◽  
Jan Lackmann ◽  
James A. Monroe ◽  
Ibrahim Karaman ◽  
...  

This paper reports on the tension-compression asymmetry of [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. Maximum strains of -4.8 % and 8.6 % in compression and tension, respectively, were found. A linear Clausius-Clapeyron relationship was observed for both stress-states where the smaller slope in tension resulted in a significant increase of the phase transformation temperatures with stress, which reached 180 °C under a constant stress level of 150 MPa. In addition, the material demonstrated a large pseudoelastic temperature range of about 300 °C under both stress state conditions. The results in this study unequivocally indicate the potential of these alloys for applications where elevated temperatures and stress levels prevail.


2020 ◽  
pp. 109-125
Author(s):  
O S Stolbova ◽  
K A Tikhomirova

Two methods for calculating the phase-structural deformations of shape memory alloy (SMA) structures under complex stress conditions are considered. They both are based on the one-dimensional phenomenological model, which is built upon the relationship between the direct transformation and martensitic inelasticity diagrams, which makes it possible to uniformly describe strains in the phase and structural transformations, since both of the strain components are associated with the formation of oriented martensite. The ability of the model to describe a number of basic macromechanical effects caused by martensitic transformations in SMA was shown in our previous work. After the generalization to the case of a complex stress state it can successfully be used for solving certain engineering problems. The generalization of the model can be accomplished in two ways. The first method involves the construction of three-dimensional constitutive relations, proceeding from the previously developed one-dimensional relations and some simplifying hypotheses, and the numerical implementation of these relations by the finite element method. The second is the structural method, applicable to structures, in which the stress-strain state is described by one kinematic and one force parameter. This method suggests the use of structural diagrams of direct transformation and martensitic inelasticity, which are similar to the corresponding material diagrams, but establish the dependence of the phase-structural component of the kinematic parameter on the force parameter (not the dependence of phase-structural strains on the stress). Although the structural method is associated with the necessity to experimentally determine the structural diagrams, it has the advantage of significantly reducing the computational costs. Additionally, the article presents a comparison of two methods for describing the tension-compression asymmetry, and also develops a method taking finite deformations into account.


Sign in / Sign up

Export Citation Format

Share Document