scholarly journals DESIGN OF TWO STAGE PLANETARY GEAR TRAIN FOR HIGH REDUCTION RATIO

2015 ◽  
Vol 04 (06) ◽  
pp. 150-157 ◽  
Author(s):  
Prabhakar Vitthal Pawar .
2014 ◽  
Vol 575 ◽  
pp. 395-399
Author(s):  
Long Chang Hsieh ◽  
Teu Hsia Chen ◽  
Hsiu Chen Tang

Planetary gear trains can be used as the gear reducers with high reduction ratio. This paper focused on the kinematic and meshing efficiency analysis of planetary simple gear reducer with two ring gears. First, the planetary simple gear train with two ring gears is proposed by using different shift coefficients. Then, by referring to the train value equation, the reduction-ratio equation is derived for the design the planetary gear reducer with two ring gears. According to reduction-ratio equation, the planetary gear reducers with two ring gears and having reduction ratios (20, 50, and 100) are synthesized. Then, based on the latent power theorem, the meshing efficiency equation of planetary gear train with two ring gears is derived. According to the meshing efficiency equation, the meshing efficiencies of planetary gear trains with two ring gears are analyzed. In this paper, we conclude: (1) Larger reduction ratio makes less meshing efficiency, and (2) The meshing efficiency of planetary gear reducer with two ring gears is not good.


2013 ◽  
Vol 284-287 ◽  
pp. 867-871
Author(s):  
Long Chang Hsieh ◽  
Tzu Hsia Chen

Planetary gear trains are commonly used in various transmissions due to the following reasons: compact size, light weight, and multi-degrees of freedom. For example, planetary gear trains can be designed for following functions: gear reducers for power machinery, internal gear hubs for bicycle, gear increasers for wind generator, gear reducers for robot. In general, the reduction of non-coupled planetary gear train is less than 10. The purpose of this paper is to introduce the planetary gear train with high reduction ratio. Coupled planetary gear train can be designed to has high reduction ratio. Hence, this paper focuses on innovative, kinematic, and engineering design of coupled planetary gear train with high reduction ratio. The coupled planetary gear train synthesized in this paper is a planetary gear train with simple planet gears. It can be used as the gear reducer for a robot. Refer to the train value equation, the reduction-ratio equation of coupled planetary gear train is derived for the design purpose. Then, the coupled planetary coupled gear train with simple planet gears is synthesized based on the above reduction-ratio equation. Finally, the corresponding engineering design drawing is accomplished.


2013 ◽  
Vol 319 ◽  
pp. 610-615 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsiu Chen Tang

The power system equipped in machinery contains power source (motor or engine) and gear reducer to get large output torque. The rotation speed of motor is made higher and higher to obtain high power with the same volume. Hence, the reduction ratio of gear reducer is required to be higher and higher. Planetary gear trains can be used as the gear reducers with high reduction ratio. However, the planetary gear train with high reduction ratio is compound gear system. The purpose of this paper is to propose 2K-2H type planetary gear reducers with high reduction ratio. Based on the concept of train value equation, we propose a new representation to present the kinematic relationship of the members of the train circuit. According to this representation graph, we propose an algorithm for the kinematic design of planetary simple gear trains with high reduction ratio. Some 2K-2H type planetary gear reducers are designed to illustrate the design algorithm.


2012 ◽  
Vol 591-593 ◽  
pp. 2165-2168 ◽  
Author(s):  
Long Chang Hsieh ◽  
Tzu Hsia Chen

The power system equipped in machinery contains power source (motor or engine) and gear reducer to get large output torque. The rotation speed of motor is made higher and higher to attach high power with the same volume. Hence, the reduction ratio of gear reducer is required to be higher and higher. Planetary gear trains can be used as the gear reducers with high reduction ratio. However, the planetary gear train with high reduction ratio is compound gear system. This paper proposes planetary simple gear reducers with high reduction ratio. According to train value equation, the kinematic design of planetary simple gear trains with high reduction ratio is accomplished. Some design examples are designed to illustrate the design algorithm. Also, in this paper, the static force analysis is carried out to prove the kinematic design is right. Based on the proposed algorithm, all planetary simple gear trains with high reduction ratio can be synthesized.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


2019 ◽  
pp. 27-30
Author(s):  
Kiril Arnaudov ◽  
Dimitar Petkov Karaivanov

Sign in / Sign up

Export Citation Format

Share Document