scholarly journals Normed Division Algebras Application to the Monopole Physics

2021 ◽  
Vol 31 (3) ◽  
pp. 235
Author(s):  
Dai-Nam Le ◽  
Van-Hoang Le

We review some normed division algebras (R, C, H, O)  applications to the monopole physics and MICZ-Kepler problems. More specifically, we will briefly review some results in applying the normed division algebras to interpret the existence of Dirac, Yang, and SO(8) monopoles. These monopoles also appear during the examination of the duality between isotropic harmonic oscillators and the MICZ-Kepler problems. We also revisit some of our newest results in the nine-dimensional MICZ-Kepler problem using the generalized Hurwitz transformation.

Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves that Bruhat-Tits buildings exist. It begins with a few definitions and simple observations about quadratic forms, including a 1-fold Pfister form, followed by a discussion of the existence part of the Structure Theorem for complete discretely valued fields due to H. Hasse and F. K. Schmidt. It then considers the generic unramified cases; the generic semi-ramified cases, the generic ramified cases, the wild unramified cases, the wild semi-ramified cases, and the wild ramified cases. These cases range from a unique unramified quadratic space to an unramified separable quadratic extension, a tamely ramified division algebra, a ramified separable quadratic extension, and a unique unramified quaternion division algebra. The chapter also describes ramified quaternion division algebras D₁, D₂, and D₃ over K containing a common subfield E such that E/K is a ramified separable extension.


PIERS Online ◽  
2007 ◽  
Vol 3 (4) ◽  
pp. 485-489 ◽  
Author(s):  
P. Peidaee ◽  
Alireza Baghai-Wadji
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang–Mills fields, and fermions. Dynamical variables are described by odd-grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper, we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space-time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electrocolour symmetry, as shown earlier by Furey. We predict a new massless spin one boson (the ‘Lorentz’ boson) which should be looked for in experiments. Our Lagrangian correctly describes three fermion generations, through three copies of the group G2, embedded in the exceptional Lie group F4. This is the unification group for the four fundamental interactions, and it also happens to be the automorphism group of the exceptional Jordan algebra. Gravitation is shown to be an emergent classical phenomenon. Although at the Planck scale, there is present a quantised version of the Lorentz symmetry, mediated by the Lorentz boson, we argue that at sub-Planck scales, the self-adjoint part of the octonionic trace dynamics bears a relationship with string theory in 11 dimensions.


2017 ◽  
Vol 27 (11) ◽  
pp. 1730037 ◽  
Author(s):  
J. C. Sprott ◽  
W. G. Hoover

Dynamical systems with special properties are continually being proposed and studied. Many of these systems are variants of the simple harmonic oscillator with nonlinear damping. This paper characterizes these systems as a hierarchy of increasingly complicated equations with correspondingly interesting behavior, including coexisting attractors, chaos in the absence of equilibria, and strange attractor/repellor pairs.


2012 ◽  
Vol 26 (31) ◽  
pp. 1250210 ◽  
Author(s):  
M. A. GRADO-CAFFARO ◽  
M. GRADO-CAFFARO

The optical potential of an attractive nonrelativistic electron gas interacting with nuclear matter is determined on the basis of the concept of degenerate Fermi gas. In fact, the involved electrons are treated as three-dimensional quantum harmonic oscillators confined at the surface of a spherical (approximately ideal) potential well. Within this picture, the Fermi velocity is calculated as well as the spatial electron density at the surface of the potential well and the attractive force between the electron gas and the nuclear matter. In addition, considerations related to the Lippmann–Schwinger model are made.


2006 ◽  
Vol 04 (05) ◽  
pp. 815-825 ◽  
Author(s):  
APOORVA PATEL

Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.


2010 ◽  
Vol 132 (3-4) ◽  
pp. 273-293 ◽  
Author(s):  
Andrei S. Rapinchuk ◽  
Igor A. Rapinchuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document