scholarly journals Nonlinear dynamic characteristics of planetary gear transmission system considering squeeze oil film

Author(s):  
Jingyue Wang ◽  
Ning Liu ◽  
Haotian Wang ◽  
Lixin Guo

Based on the planetary gear transmission system considering the coupling effects of friction and elastohydrodynamic lubrication, a torsional dynamic model considering friction, oil film, time-varying meshing stiffness, meshing damping, and gear backlash is established. The Runge–Kutta numerical method is used to solve the vibration equation of the system. The bifurcation diagram and largest Lyapunov exponent are used to analyze the dynamic characteristics of the system under different bifurcation parameters such as the excitation frequency, lubricant viscosity, sun–planet backlash, and planet–ring backlash. The numerical results demonstrate that with the increase of excitation frequency, the system exhibits rich nonlinear dynamic characteristics such as short-period motion, long-period motion, and chaotic motion. With the increase of lubricant viscosity, the chaotic motion of the system is suppressed at low excitation frequency and the periodic motion of the system increases at high excitation frequency. With the increase of sun–planet backlash, the chaotic motion of the system increases at low excitation frequency, and the bifurcation characteristics become complicated at high excitation frequency and enters chaotic motion in advance. With the increase of ring–planet backlash, the system delays into chaotic motion at low excitation frequency and bifurcates from single-period motion to multi-period motion in advance at high excitation frequency.

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zhibo Geng ◽  
Ke Xiao ◽  
Junyang Li ◽  
Jiaxu Wang

Abstract In this study, a nonlinear dynamic model of a spur gear transmission system with non-uniform wear is proposed to analyze the interaction between surface wear and nonlinear dynamic characteristics. A quasi-static non-uniform wear model is presented, with consideration of the effects of operating time on mesh stiffness and gear backlash. Furthermore, a nonlinear dynamic model with six degrees-of-freedom is established considering surface friction, time-varying gear backlash, time-varying mesh stiffness, and eccentricity, and the Runge–Kutta method applied to solve this model. The bifurcation and chaos in the proposed dynamic model with the change of the operating time and the excitation frequency are investigated by bifurcation and spectrum waterfall diagrams to analyze the bifurcation characteristics and the dimensionless mesh force. It is found that surface wear is generated with a change in operating time and affects the nonlinear dynamic characteristics of the spur gear system. This study provides a better understanding of nonlinear dynamic characteristics of gear transmission systems operating under actual conditions.


2012 ◽  
Vol 215-216 ◽  
pp. 1067-1070
Author(s):  
Kang Huang ◽  
Jue Li ◽  
Xin Jin ◽  
Qi Chen

For the study of nonlinear dynamic characteristics of a pair of gears in an external torque under gear meshing error excitation, we will establish two degrees of freedom nonlinear torsional vibration model. The use of Matlab / Simulink for numerical simulation solves the nonlinear dynamic model of the gear gap. Study the dynamic characteristics of the system in a certain domain of parameters on external incentive conditions, as well as external motivation of gear transmission system dynamic characteristics influence. The results have important practical value for future engineering practice on gear transmission system's dynamic design, and have important theoretical significance for complex gear transmission system dynamics study.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Hui Liu ◽  
Pengfei Yan ◽  
Pu Gao

Abstract The thermal deformation of gears will affect the vibration of the planetary system; this research mainly studied the effect of thermal conditions on planetary systems nonlinear vibration under the thermal equilibrium state. To study the influence of gear temperature on the planetary gear system, a nonlinear dynamic model considering thermal deformation was established. The mathematical expression of the thermal time-varying mesh stiffness (TTVMS) varied with temperature, and the backlash caused by the temperature change was also computed. The influence of temperature on the TTVMS was investigated. The calculation results indicated that the methods used to determine the TTVMS and backlash of gear pairs were effective, and the trends of the change in the nonlinear dynamic characteristics with temperature were obtained. According to the fast Fourier transform (FFT) spectrums and root-mean-square (RMS) analysis, the influence of temperature change on the nonlinear dynamic characteristics of the system was analyzed. When the temperature was lower than 80 °C, the vibration displacement and the supporting shaft load remained unchanged or decreased. Once the temperature was higher than 80 °C, the vibration displacement and load of the system were strengthened.


Author(s):  
Jingyue Wang ◽  
Haotian Wang ◽  
Huan Wang ◽  
Lixin Guo

AbstractIn order to analyze the influence of the random parameters of the system on the nonlinear dynamic characteristics of the gear transmission system, considering the random perturbation of damping ratio, gear backlash, meshing frequency, meshing stiffness and the low frequency excitation caused by torque fluctuation, the random vibration equations of three-degree-of-freedom gear transmission system are established according to the Newton’s law. The motion differential equations are solved by the Runge–Kutta method. The effects of different random parameters such as load ratio, tooth frequency ratio, damping ratio, gear backlash and meshing stiffness on the dynamic response of the gear transmission system are analyzed in light and heavy loads and low and high speeds.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


Sign in / Sign up

Export Citation Format

Share Document