scholarly journals Urine-Derived Stem Cells: Differentiation Potential into Smooth-Muscle Cells and Urothelial Cell

2019 ◽  
Vol 74 (3) ◽  
pp. 176-184
Author(s):  
Igor A. Vasyutin ◽  
Aleksey V. Lyundup ◽  
Sergey L. Kuznetsov

Background: Tissue engineering of low urinary tract organs requires biopsy of urinary bladder material. The current study describes non-invasive approach of obtaining autologous stem cells from urine of healthy adults. These cells were studied for potential to differentiate into epithelial cells and smooth muscle cells of the urinary bladder. Aims: To describe properties of urine-derived stem cells (USCs) and investigate their differentiation potential for tissue engineering of low urinary tract organs. Materials and Methods: USCs were isolated from urine of healthy volunteers with centrifugation and seeded in media to 24-well plates. Expression of stem cells markers (CD73, CD90, CD105, CD34, CD45, CD29, CD44, CD54, SSEA4) by USCs was assessed with flow cytometry. Expression of specific markers of smooth muscle cells and urothelial cells was assessed with fluorescence microscopy with following computational image analysis. Results: Median number of USCs per 100 ml urine was 6. Doubling time for USC was 1.440.528 days (n=4) and there were 26.34.79 population doublings for USC cultures (n=4). Median expression of markers of postnatal stem cells was CD73 ― 79.8%, CD90 ― 56.6%, CD105 ― 40.7%, CD34 1.0%, CD45 2.0%, CD29 99.0%, CD44 99.0%, CD54 ― 97.7% and SSEA4 99.0%. Treatment of cells with high concentration of EGF in media with low concentration of FBS for 10 days increased cytokeratin (CK) expression to 24.9% for CK AE1/AE3 and to 7.6% for CK 7. Treatment of USCs with media inducing smooth muscle differentiation for 10 days increased expression of -smooth muscle actin to 79.6% and expression of calponin to 97.6%. Conclusions: USCs are cells that can be found in urine in small quantities. They have high proliferative potential and express markers of postnatal stem cells. Under effect of PDGF-BB and TGF- 1 they differentiate into smooth muscle cells.


2016 ◽  
Vol 18 (1) ◽  
Author(s):  
Marta Pokrywczynska ◽  
Daria Balcerczyk ◽  
Arkadiusz Jundzill ◽  
Maciej Gagat ◽  
Monika Czapiewska ◽  
...  








Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 797
Author(s):  
Alvaro Yogi ◽  
Marina Rukhlova ◽  
Claudie Charlebois ◽  
Ganghong Tian ◽  
Danica B. Stanimirovic ◽  
...  

Synthetic grafts have been developed for vascular bypass surgery, however, the risks of thrombosis and neointimal hyperplasia still limit their use. Tissue engineering with the use of adipose-derived stem cells (ASCs) has shown promise in addressing these limitations. Here we further characterized and optimized the ASC differentiation into smooth muscle cells (VSMCs) induced by TGF-β and BMP-4. TGF-β and BMP-4 induced a time-dependent expression of SMC markers in ASC. Shortening the differentiation period from 7 to 4 days did not impair the functional property of contraction in these cells. Stability of the process was demonstrated by switching cells to regular growth media for up to 14 days. The role of IGFBP7, a downstream effector of TGF-β, was also examined. Finally, topographic and surface patterning of a substrate is recognized as a powerful tool for regulating cell differentiation. Here we provide evidence that a non-woven PET structure does not affect the differentiation of ASC. Taken together, our results indicate that VSMCs differentiated from ASCs are a suitable candidate to populate a PET-based vascular scaffolds. By employing an autologous source of cells we provide a novel alternative to address major issues that reduces long-term patency of currently vascular grafts.



2013 ◽  
Vol 8 (4) ◽  
pp. 331-336
Author(s):  
Bernard Mvula ◽  
Heidi Abrahamse

AbstractTissue engineering and regenerative medicine has become the treatment of choice for several degenerative diseases. It involves the repairing or replacing of diseased or damaged cells or tissues. Stem cells have a key role to play in this multidisciplinary science because of their capacity to differentiate into several lineages. Adipose derived stem cells (ADSCs) are adult mesenchymal stem cells that are easily harvested and have the capacity to differentiate into cartilage, bone, smooth muscle, fat, liver and nerve cells. ADSCs have been found to differentiate into smooth muscle cells which play major roles in diseases such as asthma, hypertension, cancer and arteriosclerosis. Low Intensity Laser Irradiation (LILI), which involves the application of monochromatic light, has been found to increase viability, proliferation and differentiation in several types of cells including ADSCs. This review discusses the role of ADSCs, smooth muscle cells and LILI in the science of tissue engineering and regenerative medicine.



Sign in / Sign up

Export Citation Format

Share Document