scholarly journals TLR4: the fall guy in sepsis?

Cell Stress ◽  
2020 ◽  
Vol 4 (12) ◽  
pp. 270-272
Author(s):  
Joseph Menassa ◽  
Christina Nedeva ◽  
Corey Pollock ◽  
Hamsa Puthalakath

Sepsis and its impact on human health can be traced back to 1000 BC and continues to be a major health burden today. It causes about 11 million deaths world-wide of which, more than a third are due to neonatal sepsis. There is no effective treatment other than fluid resuscitation therapy and antibiotic treatment that leave patients immunosuppressed and vulnerable to nosocomial infections. Added to that, ageing population and the emergence of antibiotic resistant bacteria pose new challenges. Most of the deleterious effects of sepsis are due to the host response to the systemic infection. In the initial phase of infection, hyper activation of the immune system leads to cytokine storm, which could lead to organ failure and this accounts for about 15% of overall deaths. However, the subsequent immune paralysis phase (mostly attributed to apoptotic death of immune cells) accounts for about 85% of all deaths. Past clinical trials (more than 100 in the last 30 years) all targeted the inflammatory phase with little success, predictably, for inflammation is a necessary process to fight infection. In order to identify the regulators of immune cell death during sepsis, we carried out an unbiased, whole genome CRISPR screening in mice and identified Trigger Receptor Expressed in Myeloid-like 4 (Treml4) as the receptor that controls both the inflammatory phase and the immune suppression phase in sepsis (Nedeva et al. (2020) Nature Immunol, doi: 10.1038/s41590-020-0789-z). Characterising the Treml4 gene knockout mice revealed new insights into the relative roles of TLR4 and TREML4 in inducing the inflammatory cytokine storm during sepsis.

2013 ◽  
Vol 81 (8) ◽  
pp. 2662-2668 ◽  
Author(s):  
Nosheen Fatima Rana ◽  
Nicolas Sauvageot ◽  
Jean-Marie Laplace ◽  
YinYin Bao ◽  
Ingolf Nes ◽  
...  

ABSTRACTEnterococcus faecalisis a highly stress resistant opportunistic pathogen. The intrinsic ruggedness of this bacterium is supposed to be the basis of its capacity to colonize the hostile environments of hospitals and to cause several kinds of infections. We show in this work that general resistance to very different environmental stresses depends on the ability ofE. faecalisto maintain redox balance via lactate dehydrogenase (LDH). Furthermore, LDH-deficient mutants are less successful than the wild type at colonizing host organs in a murine model of systemic infection. Taken together, our results, as well as those previously published forStaphylococcus aureus(A. R. Richardson, S. J. Libby, and F. C. Fang, Science 319:1672–1676, 2008), identify LDH as an attractive drug target. These drugs may have additional applications, as in the fight against glycopeptide antibiotic-resistant bacteria and even cancer.


2014 ◽  
Vol 83 (1) ◽  
pp. 372-378 ◽  
Author(s):  
Elisabeth Kernbauer ◽  
Katie Maurer ◽  
Victor J. Torres ◽  
Bo Shopsin ◽  
Ken Cadwell

Mutations that alter virulence and antibiotic susceptibility arise and persist duringStaphylococcus aureusbacteremia. However, an experimental system demonstrating transmission following bacteremia has been lacking, and thus implications of within-host adaptation for between-host transmission are unknown. We report thatS. aureusdisseminates to the gastrointestinal tract of mice following intravenous injection and readily transmits to cohoused naive mice. Both intestinal dissemination and transmission were linked to the production of virulence factors based on gene deletion studies of thesaeandagrtwo-component systems. Furthermore, antimicrobial selection for antibiotic-resistantS. aureusdisplaced susceptibleS. aureusfrom the intestine of infected hosts, which led to the preferential transmission and dominance of antibiotic-resistant bacteria among cohoused untreated mice. These findings establish an animal model to investigate gastrointestinal dissemination and transmission ofS. aureusand suggest that adaptation during the course of systemic infection has implications beyond the level of a single host.


2019 ◽  
pp. 48-54
Author(s):  
Duy Binh Nguyen ◽  
Trung Tien Phan ◽  
Trong Hanh Hoang ◽  
Van Tuan Mai ◽  
Xuan Chuong Tran

Sepsis is a serious bacterial infection. The main treatment is using antibiotics. However, the rate of antibiotic resistance is very high and this resistance is related to the outcome of treatment. Objectives: To evaluate the situation of antibiotic resistance of some isolated bacteria in sepsis patients treated at Hue Central Hospital; to evaluate the relationship of antibiotic resistance to the treatment results in patients with sepsis. Subjects and methods: prospective study of 60 sepsis patients diagnosed according to the criteria of the 3rd International Consensus-Sepsis 3 and its susceptibility patterns from April 2017 to August 2018. Results and Conclusions: The current agents of sepsis are mainly S. suis, Burkhoderiae spp. and E. coli. E. coli is resistant to cephalosporins 3rd, 4th generation and quinolone group is over 75%; resistance to imipenem 11.1%; the ESBL rate is 60%. S. suis resistant to ampicilline 11.1%; no resistance has been recorded to ceftriaxone and vancomycine. Resistance of Burkholderiae spp. to cefepime and amoxicillin/clavulanic acid was 42.9% and 55.6%, resistant to imipenem and meropenem is 20%, resistance to ceftazidime was not recorded. The deaths were mostly dued to E. coli and K. pneumoniae. The mortality for patients infected with antibiotic-resistant bacteria are higher than for sensitive groups. Key words: Sepsis, bacterial infection, antibiotics


Sign in / Sign up

Export Citation Format

Share Document