Relationship of antibiotic resistance to results of treatment in sepsis patients in Hue Central Hospital 2017 – 2018

2019 ◽  
pp. 48-54
Author(s):  
Duy Binh Nguyen ◽  
Trung Tien Phan ◽  
Trong Hanh Hoang ◽  
Van Tuan Mai ◽  
Xuan Chuong Tran

Sepsis is a serious bacterial infection. The main treatment is using antibiotics. However, the rate of antibiotic resistance is very high and this resistance is related to the outcome of treatment. Objectives: To evaluate the situation of antibiotic resistance of some isolated bacteria in sepsis patients treated at Hue Central Hospital; to evaluate the relationship of antibiotic resistance to the treatment results in patients with sepsis. Subjects and methods: prospective study of 60 sepsis patients diagnosed according to the criteria of the 3rd International Consensus-Sepsis 3 and its susceptibility patterns from April 2017 to August 2018. Results and Conclusions: The current agents of sepsis are mainly S. suis, Burkhoderiae spp. and E. coli. E. coli is resistant to cephalosporins 3rd, 4th generation and quinolone group is over 75%; resistance to imipenem 11.1%; the ESBL rate is 60%. S. suis resistant to ampicilline 11.1%; no resistance has been recorded to ceftriaxone and vancomycine. Resistance of Burkholderiae spp. to cefepime and amoxicillin/clavulanic acid was 42.9% and 55.6%, resistant to imipenem and meropenem is 20%, resistance to ceftazidime was not recorded. The deaths were mostly dued to E. coli and K. pneumoniae. The mortality for patients infected with antibiotic-resistant bacteria are higher than for sensitive groups. Key words: Sepsis, bacterial infection, antibiotics

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1841
Author(s):  
Thanaporn Chuen-Im ◽  
Korapan Sawetsuwannakun ◽  
Pimmnapar Neesanant ◽  
Nakarin Kitkumthorn

Antibiotic resistance of microorganisms is a serious health problem for both humans and animals. Infection of these bacteria may result in therapy failure, leading to high mortality rates. During an early intervention program process, the Sea Turtle Conservation Center of Thailand (STCCT) has faced high mortality rates due to bacterial infection. Previously, investigation of juvenile turtle carcasses found etiological agents in tissue lesions. Further determination of sea water in the turtle holding tanks revealed a prevalence of these causative agents in water samples, implying association of bacterial isolates in rearing water and infection in captive turtles. In this study, we examined the antibiotic resistance of bacteria in seawater from the turtle holding tank for a management plan of juvenile turtles with bacterial infection. The examination was carried out in three periods: 2015 to 2016, 2018, and 2019. The highest isolate numbers were resistant to beta-lactam, whilst low aminoglycoside resistance rates were observed. No gentamicin-resistant isolate was detected. Seventy-nine isolates (71.17%) were resistant to at least one antibiotic. Consideration of resistant bacterial and antibiotic numbers over three sampling periods indicated increased risk of antibiotic-resistant bacteria to sea turtle health. Essentially, this study emphasizes the importance of antibiotic-resistant bacterial assessment in rearing seawater for sea turtle husbandry.


2019 ◽  
Vol 82 (11) ◽  
pp. 1857-1863 ◽  
Author(s):  
ZAHRA S. AL-KHAROUSI ◽  
NEJIB GUIZANI ◽  
ABDULLAH M. AL-SADI ◽  
ISMAIL M. AL-BULUSHI

ABSTRACT Enterobacteria may gain antibiotic resistance and be potent pathogens wherever they are present, including in fresh fruits and vegetables. This study tested the antibiotic resistance of enterobacteria isolated from 13 types of local and imported fresh fruits and vegetables (n = 105), using the standard Kirby-Bauer disk diffusion method. Phenotypic and genotypic characterizations of AmpC β-lactamases were determined in cefoxitin-resistant isolates. Ten percent of the enterobacteria tested (n = 88) were pansusceptible, 74% were resistant to at least one antibiotic, and 16% were multidrug resistant. Enterobacteria isolates showed the highest antibiotic resistance against ampicillin (66%), cephalothin (57%), amoxicillin–clavulanic acid (33%), cefoxitin (31%), tetracycline (9%), nalidixic acid (7%), trimethoprim (6%), and kanamycin (5%). Three isolates showed intermediate resistance to the clinically important antibiotic imipenem. Escherichia coli isolated from lettuce exhibited multidrug resistance against five antibiotics. Fifteen isolates were confirmed to have AmpC β-lactamase, using the inhibitor-based test and the antagonism test; the latter test confirmed that the enzyme was an inducible type. Four types of ampC β-lactamase genes (CIT, EBC, FOX, and MOX) were detected in eight isolates: four Enterobacter cloacae isolates and one isolate each of Citrobacter freundii, Enterobacter asburiae, Enterobacter hormaechei, and Enterobacter ludwigii. It was concluded that fresh fruits and vegetables might play a role as a source or vehicle for transferring antibiotic-resistant bacteria that might spread to other countries through exportation. The clinically significant AmpC β-lactamase was rarely documented in the literature on bacteria isolated from fruits and vegetables, and to our knowledge, this is the first report on the detection of an inducible type in such commodities.


2001 ◽  
Vol 45 (11) ◽  
pp. 3046-3055 ◽  
Author(s):  
Sheri K. Wilcox ◽  
Gregory S. Cavey ◽  
James D. Pearson

ABSTRACT Mutations in several ribosomal proteins are known to be related to antibiotic resistance. For several strains of Escherichia coli, the mutated protein is known but the amino acid actually altered has not been documented. Characterization of these determinants for antibiotic resistance in proteins will further the understanding of the precise mechanism of the antibiotic action as well as provide markers for resistance. Mass spectrometry can be used as a valuable tool to rapidly locate and characterize mutant proteins by using a small amount of material. We have used electrospray and matrix-assisted laser desorption ionization–time of flight (MALDI–TOF) mass spectrometry to map out all 56 ribosomal proteins in E. coli based on intact molecular masses. We used this fingerprinting approach to locate variants of ribosomal proteins displaying a change in mass. In particular we have studied proteins responsible for streptomycin, erythromycin, and spectinomycin resistance in three strains of E. coli, and then we characterized each mutation responsible for resistance by analyzing tryptic peptides of these proteins by using MALDI-TOF and nanoelectrospray tandem mass spectrometry. The results provided markers for antibiotic resistance and demonstrated that mass spectrometry can be used to rapidly investigate changes in individual proteins from a complex with picomole amounts of protein.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 222 ◽  
Author(s):  
Ian Zammit ◽  
Vincenzo Vaiano ◽  
Ana Ribeiro ◽  
Adrián Silva ◽  
Célia Manaia ◽  
...  

The threat of antibiotic resistance to the wellbeing of societies is well established. Urban wastewater treatment plants (UWTPs) are recognised sources for antibiotic resistance dissemination in the environment. Herein a novel cerium-doped zinc oxide (Ce-ZnO) photocatalyst is compared to ZnO and the benchmark TiO2-P25 in the immobilised form on a metallic support, to evaluate a photocatalytic process as a possible tertiary treatment in UWTPs. The catalysts were compared for the removal of two antibiotics, trimethoprim (TMP) and sulfamethoxazole (SMX), and for the inactivation of Escherichia coli (E. coli) strain DH5-Alpha in isotonic sodium chloride solution and of autochthonous bacteria in real secondary wastewater. In real wastewater, E. coli and other coliforms were monitored, as well as the respective fractions resistant to ofloxacin and azithromycin. In parallel, Pseudomonas aeruginosa and the respective sub-population resistant to ofloxacin or ciprofloxacin were also monitored. Photocatalysis with both ZnO and Ce-ZnO was faster than using TiO2-P25 at degrading the antibiotics, with Ce-ZnO the fastest against SMX but slower than undoped ZnO in the removal of TMP. Ce-ZnO catalyst reuse in the immobilised form produced somewhat slower kinetics maintained >50% of the initial activity, even after five cycles of use. Approximately 3 log10 inactivation of E. coli in isotonic sodium chloride water was recorded with reproducible results. In the removal of autochthonous bacteria in real wastewater, Ce-ZnO performed better (more than 2 log values higher) than TiO2-P25. In all cases, E. coli and other coliforms, including their resistant subpopulations, were inactivated at a higher rate than P. aeruginosa. With short reaction times no evidence for enrichment of resistance was observed, yet with extended reaction times low levels of bacterial loads were not further inactivated. Overall, Ce-ZnO is an easy and cheap photocatalyst to produce and immobilise and the one that showed higher activity than the industry standard TiO2-P25 against the tested antibiotics and bacteria, including antibiotic-resistant bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 618
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Although limited, studies have found conflicting results on whether co-grazing results in significant antibiotic resistance transfer between species. This type of farming system can act as a vector in the geographical spread of antibiotic-resistant bacteria in the environment. The aim of this study was to determine the antibiotic-resistant patterns between co-grazing and non-co-grazing livestock and wildlife species in South Africa. Escherichia coli was isolated from the faeces of various wildlife and livestock species from two farms in South Africa and was tested for antibiotic resistance using the Kirby–Bauer disk diffusion method against chloramphenicol, nalidixic acid, ampicillin, streptomycin, sulphafurazole, and tetracycline. A selection of some common antibiotic-resistant genes (blaCMY, aadA1, sul1, sul2, tetA, and tetB) were detected using PCR. The E. coli isolates from wildlife and livestock that co-grazed showed no significant differences in antibiotic resistance patterns. However, this was not the case for tetracycline resistance as the livestock isolates were significantly more resistant than the co-grazing wildlife isolates. The E. coli isolates from the non-co-grazing livestock and wildlife had significant differences in their antibiotic susceptibility patterns; the wildlife E. coli isolates were significantly more resistant to sulphafurazole and streptomycin than the livestock isolates, whilst those isolated from the cattle were significantly more resistant to ampicillin than the wildlife and sheep isolates. The results of this study suggest that there could be an exchange of antibiotic-resistant bacteria and genes between livestock and wildlife that co-graze.


2019 ◽  
Author(s):  
Emile Charles

AbstractIn the United States, more than two million individuals become infected by antibiotic-resistant bacteria, resulting in over 23,000 deaths annually. Bacterial biofilms, one of the major causes of this resistance, form a complex extracellular matrix that physically block antibiotic treatment. Within planktonic bacteria, two proteins, MreB and ftsZ, play a key role in bacterial cell growth and development. MreB regulates this development through maintaining the rod-like shape of gram-negative bacteria, while ftsZ regulates the timing and location of cell division. The present study compared the effects of two protein-inhibitors on biofilm formation of E. coli; the inhibitors, A22 Hydrochloride and PC190723, inhibit MreB (cell shape) and ftsZ (cell division), respectively. Efficacy was measured with a crystal violet staining assay. Four experiments were designed testing 1) the minimum inhibitory concentration of the inhibitors, 2) the synergistic effect of the inhibitors, 3) the microscopic effects of the inhibitors, and 4) the effect of the inhibitors on antibiotic susceptibility. A mid-level dosage of A22 significantly decreased biofilm density while there was no response to PC190732. The effect of A22 was verified microscopically, observing the change from bacilli cells to coccoid ones via the inhibition of MreB. In the second experiment, with conjunct inhibition, no interaction was found. Lastly, A22 was as effective as Amoxicillin in disrupting biofilms. The inhibition of MreB was found to have a key role in biofilm development. A model is proposed for biofilm density based on cell shape as affected by MreB.ImportanceEach year, more than 2 million Americans acquire antibiotic-resistant infection and 23,000 of them die (CDC, 2013). In a study done by Barsoumian et. al (2015), there was a 16% mortality rate pertaining to biofilm-related infections while non-biofilm infection caused a 5% mortality rate. These casualties aren’t limited to the United States. Abroad, antibiotic resistance is a huge issue: 25,000 deaths estimated in the EU; 38,000 deaths in Thailand; and 58,000 deaths in India, among infants alone (CDC, 2012). It is these statistics that inform us that antibiotic resistance must be addressed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Madhu Sudan Manna ◽  
Yusuf Talha Tamer ◽  
Ilona Gaszek ◽  
Nicole Poulides ◽  
Ayesha Ahmed ◽  
...  

AbstractThe antibiotic trimethoprim (TMP) is used to treat a variety of Escherichia coli infections, but its efficacy is limited by the rapid emergence of TMP-resistant bacteria. Previous laboratory evolution experiments have identified resistance-conferring mutations in the gene encoding the TMP target, bacterial dihydrofolate reductase (DHFR), in particular mutation L28R. Here, we show that 4’-desmethyltrimethoprim (4’-DTMP) inhibits both DHFR and its L28R variant, and selects against the emergence of TMP-resistant bacteria that carry the L28R mutation in laboratory experiments. Furthermore, antibiotic-sensitive E. coli populations acquire antibiotic resistance at a substantially slower rate when grown in the presence of 4’-DTMP than in the presence of TMP. We find that 4’-DTMP impedes evolution of resistance by selecting against resistant genotypes with the L28R mutation and diverting genetic trajectories to other resistance-conferring DHFR mutations with catalytic deficiencies. Our results demonstrate how a detailed characterization of resistance-conferring mutations in a target enzyme can help identify potential drugs against antibiotic-resistant bacteria, which may ultimately increase long-term efficacy of antimicrobial therapies by modulating evolutionary trajectories that lead to resistance.


2019 ◽  
Vol 57 (3B) ◽  
pp. 49
Author(s):  
Ngoc Thi Anh Tong

This study aimed to investigate the bacterial contamination of flake and cube ice being used dailyin the community. Thirty-one ice samples were collected from different areas in the city of Can Tho city, Vietnam. The enumeration of total aerobic mesophilic counts, the presence of coliforms and Escherichia coli (E. coli) and determination of antibiotics resistance of E. coli isolates were examined. The results indicated that total aerobic mesophilic counts ranged from 2.5 to 6.2 log CFU/mL and significant differences of total aerobic mesophilic counts were found between flake ice and cube ice (p < 0.05). Coliforms and E. coli were present on the ice samples of 93.55% and 58.06%, respectively. A total of 39 E. coli isolates were tested their resistance to 15 different antibiotics. The E. coli isolates of 74.36% were multi-resistance from three to thirteen antibiotics. The high prevalance was resistant to Ampicillin (79.49%), Cefotaxime (69.23%), Ceftazidime (46.15%), Tetracycline (56.41%), Sulfamethoxazole/Trimethoprime (46.15%), Colistin (20.51%), etc. As E. coli is an hygiene indicator and a candidate vehicle for the transfer of antibiotic resistance gene, it is highly recommended using clean and probable water in ice making as well as preventing the spread of antibiotic resistant bacteria.


Author(s):  
Reza Ranjbar ◽  
Maryam Zeynali ◽  
Nooshin Sohrabi ◽  
Asghar Ali Kamboh

BACKGROUND <br />Hospital wastewaters may contain antibiotic resistant bacteria such as Escherichia coli. These E. coli harbor integron genes that are responsible for antibiotic resistance. The purpose of the current study was to evaluate the frequency of class 1 and 2 integrons in environmental antibiotic resistant E. coli strains isolated from the hospital wastewaters in Tehran, Iran.<br /><br />METHODS<br />As a descriptive cross-sectional study, this research was performed from April to September 2015 on hospital wastewaters in Tehran. Bacterial isolation and identification was performed by standard biochemical and bacteriological procedures. Susceptibility testing was done by employing the disk diffusion method using different antibiotics. Total DNAs were extracted to evaluate the presence of class 1 and 2 integrons by using the polymerase chain reaction (PCR) method with specific primers. <br /><br />RESULTS<br />Fifty E. coli strains were isolated and identified from the wastewaters of 25 hospitals in Tehran. The phenotype results showed that 46 isolates (92%) were resistant to at least one antibiotic and 27 isolates (54%) were multidrug resistant. PCR showed that 35 (70%) and 20 (40%) of the isolates had class 1 and 2 integrons respectively and 14 isolates (28%) had both class 1 and class 2 integrons.<br /><br />CONCLUSION<br />This study has shown a considerable presence of class 1 and class 2 integrons in E. coli strains isolated from hospital wastewaters in Tehran. Proper antibiotics prescription and appropriate hospital wastewater treatment can prevent resistance genes in E. coli from circulating in the environment.


Author(s):  
Daile Meek Salvador-Membreve ◽  
Windell L. Rivera

Abstract Lakes are one of the sinks of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs); however, information on ARB and ARGs in lakes in the Philippines is scarce. In this study, Escherichia coli was isolated from the largest freshwater lake in the Philippines, Laguna Lake, to detect antibiotic resistance and the presence of ARGs. Broth microdilution assay (BMA) and molecular identification of five environmentally prevalent ARGs (strA, blaCTX-M, blaSHV, blaTEM, and tetA) were performed. The majority (75.70%) of the isolates harbored at least one of the targeted antibiotic genes. Multiplex PCR detected about 49.07% of the isolates had genes for extended-spectrum β-lactamases (ESBL), which were mostly represented by blaTEM (47.66%). The genes strA and tetA were observed in this study with detection frequencies of 29.91 and 45.33%, respectively. About 95.69% of thermotolerant E. coli isolates were non-susceptible to six different antibiotics using BMA. Nearly 37% of the isolates were found to be multidrug-resistant (MDR) with most isolates resistant to ampicillin (81.72%). Furthermore, the occurrence of ESBL genes was significantly correlated with tetA genes (P = 0.013). To date, this study is the first to report on the presence of MDR and thermotolerant E. coli in Laguna Lake, Philippines.


Sign in / Sign up

Export Citation Format

Share Document