scholarly journals Effect of quality of irrigation water and levels of N-fertigation on nitrogen use efficiency and water use efficiency of drip irrigated tomato

2017 ◽  
Vol 10 (2) ◽  
pp. 461-464
Author(s):  
NARENDER KUMAR ◽  
AMANDEEP SINGH ◽  
SANJAY KUMAR ◽  
ARVIND ARVIND
Author(s):  
Abdel Rahman Mohammad Said Al-Tawaha ◽  
Satybhan Singh ◽  
Virendra Singh ◽  
Uzma Kafeel ◽  
Mohd Irfan Naikoo ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Yongli Zhang ◽  
Yu Shi ◽  
Zhenwen Yu

AbstractThis study aims to investigate optimization of the basal-top-dressing nitrogen ratio for improving winter wheat grain yield, nitrogen use efficiency, water use efficiency and physiological parameters under supplemental irrigation. A water-saving irrigation (SI) regime was established and sufficient irrigation (UI) was used as a control condition. The split-nitrogen regimes used were based on a identical total nitrogen application rate of 240 kg ha−1 but were split in four different proportions between sowing and the jointing stage; i.e. 10:0 (N1), 7:3 (N2), 5:5 (N3) and 3:7 (N4). Compared with the N1, N2 and N4 treatments, N3 treatment increased grain yield, nitrogen and water use efficiencies by 5.27–17.75%, 5.68–18.78% and 5.65–31.02%, respectively, in both years. The yield advantage obtained with the optimized split-nitrogen fertilizer application may be attributable to greater flag leaf photosynthetic capacity and grain-filling capacity. Furthermore, the N3 treatment maintained the highest nitrogen and water use efficiencies. Moreover, we observed that water use efficiency of SI compared with UI increased by 9.75% in 2016 and 10.79% in 2017, respectively. It can be concluded that SI along with a 5:5 basal-top-dressing nitrogen ratio should be considered as an optimal fertigation strategy for both high grain yield and efficiency in winter wheat.


Author(s):  
Welson L. Simões ◽  
Anderson R. de Oliveira ◽  
Alessandra M. Salviano ◽  
Jucicléia S. da Silva ◽  
Marcelo Calgaro ◽  
...  

ABSTRACT The objective of this study was to evaluate the influence of leaching fraction on the biometric and production characteristics and technological quality of the juice of sugarcane varieties grown in saline soil in the Brazilian semiarid region. The experimental design was in randomized blocks, with three repetitions, in a 2 × 3 × 3 factorial scheme, corresponding to two sugarcane cultivation cycles: plant cane and ratoon cane; three sugarcane varieties: RB72454, SP943206 and VAT90212; and, three leaching fractions of irrigation water: 0; 9.1; and 16.6%. Number of living leaves, number of internodes, leaf area, stem diameter, plant height, number of tillers, yield, total soluble solids content (°Brix), percentage of industrial fiber, juice purity, juice Pol%, cane Pol% and total recoverable sugar were evaluated. At the end of the two crop cycles, water use efficiency was determined. The varieties SP943206 and VAT90212 showed higher yield under leaching fraction of irrigation water of 9.1% in both cycles, and higher water use efficiency values were observed for the variety VAT90212. Application of leaching fractions to reduce soil salinity does not promote changes in the technological quality of the sugarcane varieties RB72454, SP943206 and VAT90212.


2001 ◽  
Vol 31 (11) ◽  
pp. 2014-2025 ◽  
Author(s):  
Darren E Robinson ◽  
Robert G Wagner ◽  
F Wayne Bell ◽  
Clarence J Swanton

The objective of this study was to understand the mechanism underlying nitrogen (N) and water competition between jack pine (Pinus banksiana Lamb.) and four boreal forest species. Large-leaved aster (Aster macrophyllus L.), Canada blue-joint grass (Calamagrostis canadensis (Michx.) Beauv.), trembling aspen (Populus tremuloides (Michx.), and red raspberry (Rubus idaeus L.) were planted at a range of densities (0-8 plants/m2) with jack pine seedlings. Net photosynthesis (Pn), nitrogen-use efficiency (NUE), water-use efficiency (WUE) of each species were monitored over three consecutive growing seasons. Changes in available soil N and water were also measured. Jack pine Pn, NUE, and WUE decreased as competitor density increased, but these effects varied among species (p < 0.001) and over time (p < 0.001). The influence of density on jack pine Pn decreased over time for aster and blue-joint grass and increased over time for aspen and raspberry (p < 0.001). At most sample times, jack pine Pn correlated with available soil N. In contrast, the correlation between jack pine Pn and soil water was rarely significant.


Sign in / Sign up

Export Citation Format

Share Document