scholarly journals Examination of the physical state of the soil under conventional and reduced tillage systems

2013 ◽  
pp. 183-186
Author(s):  
Géza Tuba

he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.

2014 ◽  
pp. 109-113
Author(s):  
Lilla Szűcs ◽  
Géza Tuba ◽  
József Zsembeli

The effect of PRP-SOL soil conditional on soil compaction, moisture content and bulk density is studied in a long-term soil cultivation experiment from 1997 on a heavy textured meadow chernozem soil, in reduced and conventional tillage at Karcag Research Institute. Our investigations were made in the vegetation period of corn, in June and after harvesting, on stubble. Soil compaction was measured with a penetrometer, the actual moisture content was determined by gravimetric method. The bulk density values of the regularly cultivated soil layer of 0–10 and 10–20 cm depths were defined from undisturbed soil samples. We established that after 3 years the application of the soil conditioner has positive effect on soil compaction and moisture status of the top layer in the reduced tillage system. We could not figure out this positive effect in the case of conventional tillage.


2016 ◽  
pp. 95-99
Author(s):  
Géza Tuba ◽  
Györgyi Kovács ◽  
József Zsembeli

The effect of reduced and conventional tillage on soil compaction, soil moisture status and carbon-dioxide emission of the soil was studied on a meadow chernozem soil with high clay content in the soil cultivation experiment started in 1997 at Karcag Research Institute. Our investigations were done on stubbles after the harvest of winter wheat and winter peas after the very droughty vegetation period of 2014/2015. We established that the soil in both tillage systems was dry and compacted and the CO2-emission was very low. The positive effects of reduced tillage could be figured out only in the soil layer of 40–60 cm in the given weather conditions of that period.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 482
Author(s):  
Michael Kuhwald ◽  
Wolfgang B. Hamer ◽  
Joachim Brunotte ◽  
Rainer Duttmann

Conservation agriculture may lead to increased penetration resistance due to soil compaction. To loosen the topsoil and lower the compaction, one-time inversion tillage (OTIT) is a measure frequently used in conservation agriculture. However, the duration of the positive effects of this measure on penetration resistance is sparsely known. Therefore, the aim of this study was to analyze the spatio-temporal behavior of penetration resistance after OTIT as an indicator for soil compaction. A field subdivided into three differently tilled plots (conventional tillage with moldboard plough to 30 cm depth (CT), reduced tillage with chisel plough to 25 cm depth (RT1) and reduced tillage with disk harrow to 10 cm depth (RT2)) served as study area. In 2014, the entire field was tilled by moldboard plough and penetration resistance was recorded in the following 5 years. The results showed that OTIT reduced the penetration resistance in both RT-plots and led to an approximation in all three plots. However, after 18 (RT2) and 30 months (RT1), the differences in penetration resistance were higher (p < 0.01) in both RT-plots compared to CT. Consequently, OTIT can effectively remove the compacted layer developed in conservation agriculture. However, the lasting effect seems to be relatively short.


2011 ◽  
Vol 51 (No. 3) ◽  
pp. 124-130 ◽  
Author(s):  
K. Kováč ◽  
M. Macák ◽  
M. Švančárková

During 1993&ndash;1995 the effect of conventional tillage, reduced till, mulch till and no-till technology on soil moisture dynamics has been studied in field experiment on Haplic chernozems near Pie&scaron;ťany. The tillage treatments were evaluated under a single cropping of maize and spring barley &ndash; common peas &ndash; winter wheat crop rotation. Soil samples for gravimetric determination of moisture content were collected from six layers up to 0.8 m, three times per year (April&ndash;July). The soil moisture was highly significantly influenced in order of importance by date of sampling, year, growing crops, tillage treatments, soil layer and by interactions year &times; crops, year &times; date of sampling, crops &times; date of sampling, tillage &times; date of sampling, year &times; tillage, date of sampling &times; layer and significant influences by interactions, tillage &times; crops. The soil under conventional tillage had significantly higher moisture content than tested reduced till, mulch till and no-till treatments. The significant influence of maize stand on better soil humidity condition (16.35%) in comparison to crops grown in a crop rotation (in average 14.10%) has been ascertained.


Author(s):  
Y.V Bekhovykh ◽  

The research goal was to study effect of soil compaction on potential moisture content. The object of study was leached chernozem of Priobskoye plateau. During the research the following tasks were solved: to study the change in total capacity in the surface layer of soil by repeated external pressure, created under different soil moisture; study the change in total capacity in the surface soil layer from the values of the external pressure created at different soil moisture; to study the dependence of the full moisture capacity of the soil to the density summation. The study revealed that the total water capacity is a function of changes in soil density and indirectly depends on the amount of external pressure, its value and soil moisture.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 148 ◽  
Author(s):  
Michael O’Flynn ◽  
John Finnan ◽  
Edna Curley ◽  
Kevin McDonnell

Harvesting Miscanthus × giganteus (J.M. Greef & Deuter ex Hodkinson & Renvoize) after shoot emergence is known to reduce yields in subsequent seasons. This research was conducted in Miscanthus to assess the effects on crop response and soil compaction of annually repeated traffic, applied both before new growth in the rhizomes (early harvest) and after shoot emergence (late harvest), at two different soil moisture contents. While an annual early harvest, yields more than a late harvest, because damage to new shoots is avoided, soil compaction may be increased following repeated harvests. Five treatments were tested: (a) An untrafficked control, (b) early-traffic on soil with typical soil moisture content (SMC) (early-normal), (c) early-traffic on soil with elevated SMC (early-elevated), (d) late-traffic on soil with typical SMC (late-normal) and (e) late-traffic on soil with elevated SMC (late-wet). The experiment was conducted on a Gleysol in Co. Dublin, Ireland during 2010 and 2011. Crop response effects were assessed by measuring stem numbers, stem height, trafficked zone biomass yield (November) and overall stem yield (January). Compaction effects were assessed by measuring penetration resistance, bulk density and water infiltration rate. Trafficked zone biomass yield in the early-dry and early-wet treatments was, respectively, 18% and 23% lower than in the control, but was, respectively, 39% and 31% higher than in the late-dry treatment. Overall, stem yield was significantly lower in the late-normal and late-wet treatments (10.4 and 10.1 tdm ha−1 respectively) when compared with the control (12.4 tdm ha−1), but no significant difference was recorded in overall stem yield between both early-traffic treatments and the control. Penetration resistance values were significantly higher in all trafficked treatments when compared with the control at depths of 0.15 m (≥54–61%) and 0.30 m (≥27–57%) and were significantly higher in 2011 when compared with 2010 at depths of 0.15 and 0.30 m. Baler system traffic in Miscanthus significantly reduced yields and significantly increased compaction annually. Miscanthus harvested early, on a dry soil, yielded 1.1 tdm ha−1 more than when harvested late on a dry soil. The yield advantage increased to 1.3 tdm ha−1 when early harvesting on a soil with 40–43% moisture content was compared with late harvesting on a wetter soil (51–52% moisture content). In this study, the magnitude of yield losses from compaction or other causes in early harvests was substantially lower than the yield losses, which resulted from shoot damage in late harvests. It is likely in similar climates that the results of this study would also apply to other perennial crops growing in similar soil types.


2003 ◽  
Vol 7 (6) ◽  
pp. 937-948 ◽  
Author(s):  
G. Macelloni ◽  
S. Paloscia ◽  
P. Pampaloni ◽  
E. Santi ◽  
M. Tedesco

Abstract. Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz). The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz), is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC) were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM) and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths. Keywords: microwave radiometry, soil moisture mapping, river basins, vegetative biomass, neural networks


2021 ◽  
Vol 6 (4) ◽  
pp. 370-378
Author(s):  
Samuel Moreira Dias ◽  
André Cabral França ◽  
Ricardo Siqueira da Silva ◽  
Rita de Cassia Ribeiro Carvalho ◽  
Fabrício Resende de Aguiar

In the field, coffee is subject to the stress of soil compaction and lack of water, which may cause changes in the physiological responses of the plant. The objective of this study was to evaluate the physiological responses of the coffee tree under different soil moisture content and compaction degrees in the soil subsurface. The experimental design was in blocks, arranged in a factorial scheme, with four replications. The first factor corresponds to the two wetlands, 50 and 100% of the soil field capacity. The second factor corresponds to 60, 70, 80 and 90% of soil subsurface compaction. The experimental plot consisted of a Coffea arabica L. plant grown on a polyvinyl chloride column. The physiological responses were evaluated at 180 days of planting. The photosynthetic rate, carbon consumption, CO2 concentration in the substamatic chamber, internal carbon / atmospheric carbon ratio, water efficiency and absolute coffee growth rate were influenced by the different compaction degrees and soil moisture content. The transpiration rate and the root weight ratio were influenced only by the humidity, as opposed to the stomatal conductance and the foliar temperature, which were by degrees of compaction. The ratio of root system per soil layer was influenced by compaction degrees and soil depth. The limitation of root growth and lack of water are the main causes of the decrease in physiological responses. Subsurface compaction and water deficit together potentiate the effect negatively on the physiological responses of freshly seeded coffee plants.


2011 ◽  
Vol 59 (4) ◽  
pp. 349-359
Author(s):  
P. Földesi ◽  
C. Gyuricza

Various forms of physical soil degradation, including soil compaction, have been widely investigated both in Hungary and abroad. Soil compaction is a world-scale problem, which may be triggered by both natural and artificial factors and may adversely influence the effectiveness of crop production. In the long run this unfavourable change in the physical condition of the soil may result in extra expenses, higher energy consumption and excessive environmental damage. The effect of conventional tillage on the physical condition of the soil was assessed on six farms for three years in the framework of field experiments. In this study the physical condition of the soil was examined in terms of soil penetration resistance and moisture content. Significant differences between the experiments were revealed when penetration resistance (PR) was examinated at a depth of 20–30 cm, but not at other depths. In 2004 the mean PR values exceeded 3 MPa in experiments A, B and E. In 2005 significant differences were observed between the experiments at a depth of 30–40 cm, but no adverse compaction was detected at any depth in any of the experiments. In 2006 significant differences were observed between the experiments at depths of 0–10 cm and 10–20 cm, though even in that year no adverse soil compaction was detected. In the first year significant differences in soil moisture content were revealed at depths of 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm, and in 2005 at depths of 20–30 cm and 30–40 cm. In 2006 no significant differences were found between the experiments at any depth. The highest soil moisture contents were recorded in all the experiments at a depth of 30–40 cm. All in all, the results of both penetration resistance and moisture content were indicative of favourable soil conditions. During the period investigated adversely compact layers that would hamper moisture transport were not found in any of the experiments.


2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


Sign in / Sign up

Export Citation Format

Share Document