scholarly journals Lutetium oxide analysis by direct arc atomic emission spectrometry

2021 ◽  
Vol 25 (2) ◽  
pp. 70-83
Author(s):  
E. S. Koshel ◽  
◽  
A. A. Arkhipenko ◽  
V. B. Baranovskaya ◽  
◽  
...  

The requirements for the composition of initial oxides for the lutetium orthosilicate crystals are quite stringent: the content of the basic substance Lu2O3 is 99.999 wt%. Critical are coloring impurities: Fe, Ni, Cr, Co, Cu, V, Mn, the content of each should be no more than 0.0005 - 0.0010 wt%, Pr, Nd, Sm, Er, Tb, Yb no more than 0.0005 wt% for each one. It is also necessary to control the content of Al, As, Bi, Cd, Mg, Mo, Pb, Sb, Si, Sn, Ti, Zn, Y, La, Ce, Sc, Eu, Gd, Dy, Ho, Tm. To determine the impurity composition of lutetium oxide, one of the promising methods of analysis is direct arc atomic emission spectroscopy (DC Arc). The advantages of this method are the determination of the chemical composition without sample dissolution, a wide range of concentrations (10-6 - 10-1% wt%), a large number of determined elements. To realize the potential analytical capabilities of the method, the experimental conditions were studied: the interelectrode distance, the shape and size of graphite electrodes, the ratio of Lu2O3 to the spectral buffer, the type of carriers and operating modes of the generator. For most elements, the limits of determination are n ∙ 10-6 - n ∙ 10-4 wt%, that is significantly lower than in the current methods of DC Arc. The trueness of results is controlled by ICP-MS. The complex application of new approaches and modern capabilities of spectral equipment made it possible to develop a method with improved metrological characteristics.

2015 ◽  
Vol 8 (1) ◽  
pp. 25 ◽  
Author(s):  
Hiu Tung Chu ◽  
Spencer E. Taylor

<p>The routine determination of some group 1 and group 2 metals is important because of their biological, physiological and industrial relevance. Flame atomic emission spectrometry, or flame photometry (FP), is well-suited to the determination of several alkali and alkaline earth metals which are easily ionized in a gas flame. Here, we consider the application of flame photometry as a simple but sensitive analytical method which is normally restricted to the determination of one element at a time. We have demonstrated the use of a new multi-element instrument for the simultaneous determination of four cations, namely Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> and Ca<sup>2+</sup> in six different brands of soy sauce currently available in the UK. The Na<sup>+</sup> concentrations are compared with quoted nutrition values given on the product labels, and found to be in very good agreement for “low-salt” soy sauce, but some departures were noted in the higher salt products, the present results indicating higher salt content than the supplied data. Li<sup>+</sup> concentrations were below the detection limit (i.e., &lt;1 mg/L under the conditions used in this study). This demonstration study has shown multi-element flame photometry to be a straightforward means of analysing water-based products that could be more widely adopted for many different applications. Typical maximum concentrations for the direct analysis of aqueous solutions were found to be 50 mg/L (Li<sup>+</sup>), 200 mg/L (Na<sup>+</sup>, K<sup>+</sup>) and 1000 mg/L (Ca<sup>2+)</sup>. Although not the primary goal of this study, we noted some variance between the present results and values quoted on some of the products. This may relate to the use of indirect methods for estimating salt (sodium) concentrations. The use of flame photometry, however, would provide a rapid measurement of important cations in a wide range of applications.</p>


Author(s):  
Sayyed Mohammad Ali Noori ◽  
Mohammad Hashemi ◽  
Sajjad Ghasemi

Abstract: Saffron is one of the most expensive spices in the world, and its popularity as a tasty food additive is spreading rapidly through many cultures and cuisines. Minerals and heavy metals are minor components found in saffron, which play a key role in the identification of the geographical origin, quality control, and food traceability, while they also affect human health. The chemical elements in saffron are measured using various analytical methods, such as techniques based on spectrometry or spectroscopy, including atomic emission spectrometry, atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The present study aimed to review the published articles about heavy metals and minerals in saffron across the world. To date, 64 chemical elements have been found in different types of saffron, which could be divided into three groups of macro-elements, trace elements, and heavy metals (trace elements with a lower gravity/greater than five times that of water and other inorganic sources). Furthermore, the chemical elements in the saffron samples of different countries have a wide range of concentrations. These differences may be affected by geographical condition such as physicochemical properties of the soil, weather and other environmental conditions like saffron cultivation and its genotype.


2009 ◽  
Vol 92 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Hailin Zhang ◽  
Solomon Kariuki ◽  
Jackie L Schroder ◽  
Mark E Payton ◽  
Charlie Focht

Abstract The Mehlich 3 (M3) method is widely used for extraction of plant-available phosphorus (P) from soil over a wide range of pH values. The method is also used by many laboratories to determine multiple plant-available nutrients simultaneously. However, this method has not been statistically validated within and among laboratories. The objective of this study was to determine the repeatability (within-laboratory performance) and reproducibility (among-laboratories performance) of the M3 method by using a wide variety of soils. An in-house homogeneity test was conducted for 10 soils. Three replicates of each of the 10 soils were sent to 26 domestic and international laboratories primarily for P analysis. Samples were scooped, weighed, or both scooped and weighed for extraction. The P in extracts was quantified by the participating laboratories by using inductively coupled plasma-atomic emission spectrometry (ICP-AES) or colorimetrically. For the scooped samples analyzed colorimetrically, the repeatability relative standard deviation (RSDr) ranged from 2.07 to 12.1; the RSDr ranged from 2.2 to 21.4 for the scooped samples analyzed by ICP-AES. For the weighed samples analyzed colormetrically, the RSDr values were 1.099.34, and for the weighed samples analyzed by ICP-AES, they were 1.705.76. For the reproducibility data, the RSDR values ranged from 6.85 to 50.8 for the scooped-colorimetry category, from 6.95 to 73.9 for the scooped-ICP-AES category, from 7.19 to 42.6 for the weighed-colorimetry category, and from 5.29 to 35.9 for the weighed-ICP-AES category. The greatest RSD values were associated with the Susitna soil, which had the smallest concentration of extractable P. Because of the relatively small concentration of P in this soil, the laboratories were attempting to measure solution concentrations that were close to the detection limits. The Horwitz ratios (HorRat) were also used to evaluate the repeatability, HorRat(r), and reproducibility, HorRat(R). Overall, the M3 P method appears to be both repeatable and reproducible across the 4 categories, and the vast majority of the HorRat values for both repeatability and reproducibility were within the acceptable range. The results of this study indicate that the M3 P method for the determination of plant-available P in soil is both accurate and precise when standardized procedures are used. The method has been shown to be suitable for use as a reference method for testing soil materials for extractable P.


Agrociencia ◽  
2020 ◽  
Vol 54 (3) ◽  
pp. 413-434
Author(s):  
Juliana Padilla-Cuevas ◽  
Hernani T. Yee-Madeira ◽  
Agustín Merino-García ◽  
Claudia Hidalgo ◽  
Jorge D. Etchevers

Las técnicas para analizar los elementos esenciales o tóxicos para las plantas y los seres humanos, ha experimentado un acelerado desarrollo en los últimos tiempos, tanto en las convencionales o clásicas, que requieren la solubilización de la muestra, como en otras emergentes que no la requieren. Las técnicas convencionales avanzadas y las no destructivas se usan poco por los investigadores en genética, agronomía, nutrición, fisiología, biología, para evaluar la composición y calidad nutrimental de alimentos, cuantificar elementos metálicos esenciales y tóxicos, diagnosticar el estado nutrimental de los cultivos y estudiar alimentos funcionales. Estas técnicas analíticas se pueden aplicar, además, a suelos, abonos y fertilizantes. El objetivo de este ensayo es difundir las posibilidades de aplicación y los principios básicos de estas técnicas analíticas emergentes. La espectrometría de emisión por atomización con plasma inductivamente acoplado (ICP, Inductively coupled plasma) y la de ICP masas (ICP-MS, Mass spectrometry with inductive coupling plasma) tienen mayor interés que las técnicas clásicas usadas en los laboratorios de los países de escaso desarrollo, como las espectrometrías de emisión (AES, Atomic emission spectrometry) y absorción atómica (AAS, Atomic absorption spectrometry), que requieren solubilización de la matriz. La ICP-MS y la ICP tienen ventajas para el análisis simultáneo de contenidos totales de la mayoría de los elementos esenciales para el crecimiento de los vegetales. Entre las técnicas no destructivas de la matriz, la mayoría de las consideradas en este ensayo se basan en la interacción de los rayos X con la materia, como fotoemisión de rayos X (XPS, X-ray photoelectron spectrometry), emisión de rayos X inducida por partículas (PIXE, Particle induced X-ray emission), fluorescencia de rayos X (XRF, X-ray fluorescence) y espectrometría de dispersión de energía de rayos X (EDS, Energy-dispersive X-ray spectroscopy), similares en sus fundamentos. Estas técnicas, a diferencias de las anteriores, no requieren solubilizar la muestra o su preparación es mínima. Otras ventajas son su rapidez, la realización de análisis multielemental simultáneo, tamaño pequeño de muestra, adquisición de la distribución de elementos químicos en la muestra y generar mapas en dos dimensiones. Las cuatro técnicas descritas más arriba analizan contenidos totales. PIXE y XRF presentan mayor sensibilidad que las otras dos para cuantificar elementos traza en concentraciones de partes por millón, y estas dos más EDS se pueden acoplar a microscopios ad hoc para obtener la distribución de elementos químicos y hacer mapeos. La técnica XPS permite analizar fracciones iónicas en estudios de estados de oxidación de los elementos, pero las concentraciones en las muestras deben ser superiores a 0.1% en peso. Las aplicaciones de las técnicas no destructivas generan información complementaria a las clásicas y aportan conocimiento básico. Otras ventajas es que la preparación de las muestras requiere menos tiempo, excepto cuando se requieren mapeos. Su capacidad para ejecutar multianálisis permite reducir costos. En México y otros países hay grupos de investigación especializados en estas técnicas, pero es necesario desarrollar e implementar aplicaciones para realizar análisis de matrices biológicas como vegetales (semillas, hojas, etc.), alimentos, abonos y matriz orgánica de los suelos. Un conocimiento más profundo de estas técnicas permitirá la interacción de grupos de investigación y generar información para estudios de ciencia básica en agronomía y alimentos.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Stanko Ilić Popov ◽  
Trajče Stafilov ◽  
Robert Šajn ◽  
Claudiu Tănăselia ◽  
Katerina Bačeva

A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.


2003 ◽  
Vol 1 (3) ◽  
Author(s):  
B. Zlateva ◽  
R. Djingova ◽  
I. Kuleff

AbstractThe possibility of using inductively coupled plasma atomic emission spectrometry (ICP-AES) to determine the elemental composition of archaeological bones elements was evaluated and discussed. The interferences of the major elements (Ca, P, K, Na, Al and Fe) on the microelements (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) were investigated and the appropriate analytical lines were selected. The role of different nebulizers (cross-flow, Babington and Meinhard) on detection limits were investigated. The applicability of the proposed procedure was demonstrated analyzing IAEA-SRM-H-5 (Animal bone); and authentic bone sample dating back to the 4th century BC. These results were compared to ETAAS and ICP-MS.


Sign in / Sign up

Export Citation Format

Share Document