scholarly journals Interstellar planets

Author(s):  
G. N. Dryomova ◽  
◽  
V. V. Dryomov ◽  
A. V. Tutukov ◽  
◽  
...  

The lecture is devoted to the study of the role of gravitational scattering in the evolution of planetary systems. This mechanism explains the origin of the Oort cloud and free asteroids, comets, and planets (ACPs) from the parent star.

2020 ◽  
Vol 633 ◽  
pp. A80 ◽  
Author(s):  
Małgorzata Królikowska

Context. The original 1∕a-distribution is the only observational basis for the origin of long-period comets (LPCs) and the dynamical properties of the Oort Cloud. Although they are very subtle in the motion of these comets, non-gravitational effects can cause major changes in the original semimajor axis, 1∕aori. Aims. We obtained reliable non-gravitational orbits for as many LPCs with small perihelion distances of q < 3.1 au as possible, and determined the corresponding shape of the Oort spike. Methods. We determined the osculating orbits of each comet using several data-processing methods, and selected the preferred orbit using a few specific criteria. The distribution of 1∕aori for the whole comet sample was constructed using the individual Gaussian distribution we obtained for the preferred solution of each comet. Results. The derived distribution of 1∕aori for almost all known small-perihelion Oort spike comets was based on 64% of the non-gravitational orbits. This was compared with the distribution based on purely gravitational orbits, as well as with 1∕aori constructed earlier for LPCs with q > 3.1 au. We present a statistical analysis of the magnitudes of the non-gravitational acceleration for about 100 LPCs. Conclusions. The 1∕aori-distribution, which is based mainly on the non-gravitational orbits of small-perihelion Oort spike comets, is shifted by about 10 × 10−6 au−1 to higher values of 1∕aori compared with the distribution that is obtained when the non-gravitational effects on comet motion are ignored. We show the differences in the 1∕aori-distributions between LPCs with q < 3.1 au and those with q > 3.1 au. These findings indicate the important role of non-gravitational acceleration in the motion and origin of LPCs and in the formation of the Oort Cloud.


2017 ◽  
Vol 602 ◽  
pp. A87 ◽  
Author(s):  
C. Moutou ◽  
A. Vigan ◽  
D. Mesa ◽  
S. Desidera ◽  
P. Thébault ◽  
...  
Keyword(s):  

2020 ◽  
Vol 499 (1) ◽  
pp. 1212-1225
Author(s):  
Daohai Li ◽  
Alexander J Mustill ◽  
Melvyn B Davies

ABSTRACT Most stars form in a clustered environment. Both single and binary stars will sometimes encounter planetary systems in such crowded environments. Encounter rates for binaries may be larger than for single stars, even for binary fractions as low as 10–20 per cent. In this work, we investigate scatterings between a Sun–Jupiter pair and both binary and single stars as in young clusters. We first perform a set of simulations of encounters involving wide ranges of binaries and single stars, finding that wider binaries have larger cross-sections for the planet’s ejection. Secondly, we consider such scatterings in a realistic population, drawing parameters for the binaries and single stars from the observed population. The scattering outcomes are diverse, including ejection, capture/exchange, and collision. The binaries are more effective than single stars by a factor of several or more in causing the planet’s ejection and collision. Hence, in a cluster, as long as the binary fraction is larger than about 10 per cent, the binaries will dominate the scatterings in terms of these two outcomes. For an open cluster of a stellar density 50 pc−3, a lifetime 100 Myr, and a binary fraction 0.5, we estimate that Jupiters of the order of 1 per cent are ejected, 0.1 per cent collide with a star, 0.1 per cent change ownership, and 10 per cent of the Sun–Jupiter pairs acquire a stellar companion during scatterings. These companions are typically thousands of au distant and in half of the cases (so 5 per cent of all Sun–Jupiter pairs), they can excite the planet’s orbit through Kozai–Lidov mechanism before being stripped by later encounters. Our result suggests that the Solar system may have once had a companion in its birth cluster.


2004 ◽  
Vol 219 ◽  
pp. 311-322 ◽  
Author(s):  
Nuno C. Santos ◽  
Michel Mayor ◽  
Dominique Naef ◽  
Francesco Pepe ◽  
Didier Queloz ◽  
...  

Radial velocity surveys have revealed up to now about 115 extra-solar planets, among which a few multi-planetary systems. The discovered planets present a wide variety of orbital elements and masses, which are raising many problems and questions regarding the processes involved in their formation. The statistical analysis of the distributions of orbital elements, planetary masses, and relations between these, is however already giving some strong constraints on the formation of the planetary systems. Furthermore, the study of the planet host stars has revealed the crucial role of the stellar metallicity on the giant planet formation. In this paper we will review the current status of the research on this subject.


Icarus ◽  
2011 ◽  
Vol 214 (1) ◽  
pp. 334-347 ◽  
Author(s):  
M. Fouchard ◽  
Ch. Froeschlé ◽  
H. Rickman ◽  
G.B. Valsecchi
Keyword(s):  

2020 ◽  
Vol 897 (1) ◽  
pp. 72
Author(s):  
Gijs D. Mulders ◽  
David P. O’Brien ◽  
Fred J. Ciesla ◽  
Dániel Apai ◽  
Ilaria Pascucci

2006 ◽  
Vol 16 (06) ◽  
pp. 1633-1644
Author(s):  
RUDOLF DVORAK

This paper reviews the important role of resonances in the structure of planetary systems. After a short introduction to the basics of orbital dynamics of motion in resonances we describe the dynamics of our planetary systems and also of extrasolar planetary systems, where up to now more than 100 are known. In our planetary system the planets move in quite regular orbits with small eccentricities although it was found that the motion of the inner planets is "slightly" chaotic on time scales of tenths of millions of years. The quasi regularity (close to so-called quasi-periodic motion on a torus) is not true for the small bodies: the main belt of asteroids between Mars and Jupiter with gaps for special values of semimajor axes on one hand and with families of many small bodies on the other, is sculpted due to the presence of first mean motion resonances with Jupiter and second secular resonances with long-periodic motions of the nodes and perihelia of Jupiter and Saturn. In extrasolar systems the planets — rather surprisingly — are found to move sometimes in very high eccentric orbits when they are at distances comparable to the size of our planets. Because of our still limited observational techniques using indirect methods we have only discovered massive planets comparable to the size of Jupiter. When these planets orbit alone around their host star our research aims at the possibility of additional terrestrial planets moving in such a system. Because of mostly large eccentricities here the resonances are, in contrary to our planets, essential for the stability of orbits, and may protect or destroy an orbit. On the other hand, in multiple planetary systems we concentrate on the stability of their orbits as they are observed: a very interesting new result is that most of these multiple planetary systems with high eccentric orbits move in resonances with a special configuration which protects them from close encounters although these orbits are crossing.


Sign in / Sign up

Export Citation Format

Share Document