Innovative Concepts of Electric System Architectures and Hybrid Propulsion System for Regional Turboprop Aircraft

2018 ◽  
Vol 11 (3) ◽  
pp. 104
Author(s):  
Marco Fioriti
2020 ◽  
Vol 92 (5) ◽  
pp. 745-755
Author(s):  
Marco Fioriti ◽  
Silvio Vaschetto ◽  
Sabrina Corpino ◽  
Giovanna Premoli

Purpose This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design of the enabling technologies needed for a hybrid/electric medium altitude long endurance (MALE) unmanned aerial vehicle (UAV) to perform persistent intelligence surveillance reconnaissance (ISR) military operations. Design/methodology/approach Different architectures of hybrid-propulsion system are analyzed pointing out their operating modes to select the more suitable architecture for the reference aircraft. The selected architecture is further analyzed together with its electric power plant branch focusing on electric system architecture and the selected electric machine. A final comparison between the hybrid and standard propulsion is given at aircraft level. Findings The use of hybrid propulsion may lead to a reduction of the total aircraft mass and an increase in safety level. However, this result comes together with a reduced performance in climb phase. Practical implications This study can be used as a reference for similar studies and it provides a detailed description of propulsion operating modes, power management, electric system and machine architecture. Originality/value This study presents a novel application of hybrid propulsion focusing on a three tons class MALE UAV for ISR missions. It provides new operating modes of the propulsion system and a detailed electric architecture of its powertrain branch and machine. Some considerations on noise emissions and infra-red traceability of this propulsion, at aircraft level.


2021 ◽  
Vol 312 ◽  
pp. 11005
Author(s):  
Alberto Amerini ◽  
Leonardo Langone ◽  
Riccardo Vadi ◽  
Antonio Andreini

The increase in air traffic expected in the next years must be accompanied by innovation to ensure the lowest possible environmental impact. Hybrid electric-thermal propulsion systems are currently being investigated and could represent a breakthrough for environmental sustainability in the sector. However, the transition to electric propulsion remains challenging due to the current level of energy density related to storage systems, the additional components associated with power conversion and control systems, not to mention the cost of all the associated equipment. The purpose of this study is to carry out a preliminary assessment of a hybrid propulsion system for a short-mid range aircraft. This study investigates the series hybrid configuration, where a turboshaft, a high temperature superconducting (HTS) electric motor, batteries and power converters interact to provide the necessary propulsion for flight. A zero-dimensional procedure is developed to estimate the mass and efficiency of the powertrain components for a selected flight mission. Thermal engines are modeled with the low-order code and coupled with the components of the electric system through a python routine. A comparison in terms of weight and emissions is reported for the designed hybrid propulsion system and the conventional one. The analysis shows that the weight of the two propulsion systems is similar but, the presence of batteries, even considering a higher level of technology than the current one, leads to a significant increase in the weight of the hybrid aircraft. The second part of the study focuses on pollutant emissions, showing that the hybrid system can reduce CO2 emissions by 58% and NOx emissions by 68% compared to the conventional system. Despite the excellent premise, the reduction in payload for the hybrid aircraft causes a reduction in pollutant emissions per passenger only for NOx. For this reason, further technological improvement is needed to make hybrid propulsion advantageous in terms of both payload and pollutant emissions.


2018 ◽  
Author(s):  
Yuan Zou ◽  
Junqiu Li ◽  
Xiaosong Hu ◽  
Yann Chamaillard

Author(s):  
Anton Varyukhin ◽  
Viktor Zakharchenko ◽  
Mikhail Gordin ◽  
Flyur Ismagilov ◽  
Vyacheslav Vavilov ◽  
...  

Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 190
Author(s):  
Francesco Barato

Ablative-cooled hybrid rockets could potentially combine a similar versatility of a liquid propulsion system with a much simplified architecture. These characteristics make this kind of propulsion attractive, among others, for applications such as satellites and upper stages. In this paper, the use of hybrid rockets for those situations is reviewed. It is shown that, for a competitive implementation, several challenges need to be addressed, which are not the general ones often discussed in the hybrid literature. In particular, the optimal thrust to burning time ratio, which is often relatively low in liquid engines, has a deep impact on the grain geometry, that, in turn, must comply some constrains. The regression rate sometime needs to be tailored in order to avoid unreasonable grain shapes, with the consequence that the dimensional trends start to follow some sort of counter-intuitive behavior. The length to diameter ratio of the hybrid combustion chamber imposes some packaging issues in order to compact the whole propulsion system. Finally, the heat soak-back during long off phases between multiple burns could compromise the integrity of the case and of the solid fuel. Therefore, if the advantages of hybrid propulsion are to be exploited, the aspects mentioned in this paper shall be carefully considered and properly faced.


Author(s):  
Babak Aryana

This two-part article introduces a novel hybrid propulsion system based on the DEA compressor. The system encompasses a Pulse Detonation TurboDEA as the master engine that supplies several full-electric ancillary thrusters called DEAThruster. The system, called the propulsion set, can be categorized as a distributed propulsion system based on the design mission and number of ancillary thrusters. Part A of this article explains the design process comprising intake, compressor, detonation process, diffuser, axial turbine, and the exit nozzle. The main target is to design a high-performance low emission propulsion system capable of serving in a wide range of altitudes and flight Mach numbers that covers altitudes up to 20,000 m and flight Mach number up to the hypersonic edge. Designing the propulsion set, the design point is considered at the static condition in the sea level. Design results show the propulsion set can satisfy all requirements necessary for its mission.


Sign in / Sign up

Export Citation Format

Share Document