interference spectrum
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 581
Author(s):  
Yanan Zhang ◽  
Shubin Zhang ◽  
Haitao Gao ◽  
Danping Xu ◽  
Zhuozhen Gao ◽  
...  

This paper proposes a Fabry–Perot pressure sensor based on AB epoxy adhesive with ultra-high sensitivity under low pressure. Fabry–Perot interference, located between single-mode fiber (SMF) and hollow-core fiber (HCF), is an ultra-thin AB epoxy film formed by capillary action. Then the thick HCF was used to fix the HCF and SMF at both ends with AB epoxy adhesive. Experimental results show that when the thickness of AB epoxy film is 8.74 μm, and the cavity length is 30 μm, the sensor has the highest sensitivity. The sensitivity is 257.79 nm/MPa within the pressure range of 0–70 kPa. It also investigated the influence of the curing time of AB epoxy on the interference spectrum. Experiments showed that the interference spectrum peak is blue-shifted with the increase of curing time. Our study also demonstrated the humidity stability of this pressure sensor. These characteristics mean that our sensor has potential applications in the biomedical field and ocean exploration.


2021 ◽  
Vol 4 (1) ◽  
pp. 38
Author(s):  
Anna Sękowska-Namiotko

Tissues affected by neoplastic lesions differ from healthy tissues in terms of functionality and anatomy. These changes affect light’s propagation in tissue by modifying the refractive index, and scattering and absorption coefficients. The primary purpose of this research was to create a system to detect local changes in the refractive index using a fiber optic sensor. A prototype of a micromachine for biomedical applications has been developed. The measurements were performed using the low-coherence interferometry method, i.e., a measurement technique based on the interference of light waves from a broadband light source. The constructed optical system uses a light source with a central wavelength of 1550 nm, a spectrum analyzer, a fiber optic sensor operating on the basis of a Fabry–Perot interferometer and a silver mirror acting as a reflective layer. Measurements of the interference spectrum of reference oils, used for calibration due to the high stability of their parameters, were performed. It has been shown that the developed fiber optic sensor is able to detect changes in the refractive index based on a shift in the position of the central peak in the interference spectrum. It is also sensitive to changes of the absorption coefficient.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4080 ◽  
Author(s):  
Chao-Tsung Ma ◽  
Cheng-Ling Lee ◽  
Yan-Wun You

This paper presents a novel measuring scheme for fiber interferometer (FI) based sensors. With the advantages of being small sizes, having high sensitivity, a simple structure, good durability, being easy to integrate fiber optic communication and having immunity to electromagnetic interference (EMI), FI based sensing devices are suitable for monitoring remote system states or variations in physical parameters. However, the sensing mechanism for the interference spectrum shift of FI based sensors requires expensive equipment, such as a broadband light source (BLS) and an optical spectrum analyzer (OSA). This has strongly handicapped their wide application in practice. To solve this problem, we have, for the first time, proposed a smart measuring scheme, in which a commercial laser diode (LD) and a photodetector (PD) are used to detect the equivalent changes of optical power corresponding to the variation in measuring parameters, and a signal processing system is used to analyze the optical power changes and to determine the spectrum shifts. To demonstrate the proposed scheme, a sensing device on polymer microcavity fiber Fizeau interferometer (PMCFFI) is taken as an example for constructing a measuring system capable of long-distance monitoring of the temperature and relative humidity. In this paper, theoretical analysis and fundamental tests have been carried out. Typical results are presented to verify the feasibility and effectiveness of the proposed measuring scheme, smartly converting the interference spectrum shifts of an FI sensing device into the corresponding variations of voltage signals. With many attractive features, e.g., simplicity, low cost, and reliable remote-monitoring, the proposed scheme is very suitable for practical applications.


Sign in / Sign up

Export Citation Format

Share Document