Analytical Study for Performance Evaluation of Signal Detection Scheme to Allow the Coexistence of Additional and Existing Radio Communication Systems

2014 ◽  
Vol E97.B (2) ◽  
pp. 295-304 ◽  
Author(s):  
Kanshiro KASHIKI ◽  
I-Te LIN ◽  
Tomoki SADA ◽  
Toshihiko KOMINE ◽  
Shingo WATANABE
Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 777
Author(s):  
Jan Leuchter ◽  
Radim Bloudicek ◽  
Jan Boril ◽  
Josef Bajer ◽  
Erik Blasch

The paper describes the influence of power electronics, energy processing, and emergency radio systems (ERS) immunity testing on onboard aircraft equipment and ground stations providing air traffic services. The implementation of next-generation power electronics introduces potential hazards for the safety and reliability of aircraft systems, especially the interferences from power electronics with high-power processing. The paper focuses on clearly identifying, experimentally verifying, and quantifiably measuring the effects of power electronics processing using switching modes versus the electromagnetic compatibility (EMC) of emergency radio systems with electromagnetic interference (EMI). EMI can be very critical when switching power radios utilize backup receivers, which are used as aircraft backup systems or airport last-resort systems. The switching power electronics process produces interfering electromagnetic energy to create problems with onboard aircraft radios or instrument landing system (ILS) avionics services. Analyses demonstrate significant threats and risks resulting from interferences between radio and power electronics in airborne systems. Results demonstrate the impact of interferences on intermediate-frequency processing, namely, for very high frequency (VHF) radios. The paper also describes the methodology of testing radio immunity against both weak and strong signals in accordance with recent aviation standards and guidance for military radio communication systems in the VHF band.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170451 ◽  
Author(s):  
Henrik Brumm ◽  
Sue Anne Zollinger

Sophisticated vocal communication systems of birds and mammals, including human speech, are characterized by a high degree of plasticity in which signals are individually adjusted in response to changes in the environment. Here, we present, to our knowledge, the first evidence for vocal plasticity in a reptile. Like birds and mammals, tokay geckos ( Gekko gecko ) increased the duration of brief call notes in the presence of broadcast noise compared to quiet conditions, a behaviour that facilitates signal detection by receivers. By contrast, they did not adjust the amplitudes of their call syllables in noise (the Lombard effect), which is in line with the hypothesis that the Lombard effect has evolved independently in birds and mammals. However, the geckos used a different strategy to increase signal-to-noise ratios: instead of increasing the amplitude of a given call type when exposed to noise, the subjects produced more high-amplitude syllable types from their repertoire. Our findings demonstrate that reptile vocalizations are much more flexible than previously thought, including elaborate vocal plasticity that is also important for the complex signalling systems of birds and mammals. We suggest that signal detection constraints are one of the major forces driving the evolution of animal communication systems across different taxa.


2012 ◽  
Vol 66 (4) ◽  
pp. 479-500 ◽  
Author(s):  
P. Huang ◽  
Y. Pi ◽  
I. Progri

In some Global Positioning System (GPS) signal propagation environments, especially in the ionosphere and urban areas with heavy multipath, GPS signal encounters not only additive noise but also multiplicative noise. In this paper we compare and contrast the conventional GPS signal acquisition method which focuses on handling GPS signal acquisition with additive noise, with the enhanced GPS signal processing under multiplicative noise by proposing an extension of the GPS detection mechanism, to include the GPS detection model that explains detection of the GPS signal under additive and multiplicative noise. For this purpose, a novel GPS signal detection scheme based on high order cyclostationarity is proposed. The principle is introduced, the GPS signal detection structure is described, the ambiguity of initial PseudoRandom Noise (PRN) code phase and Doppler shift of GPS signal is analysed. From the simulation results, the received GPS signal at low power level, which is degraded by additive and multiplicative noise, can be detected under the condition that the received block of GPS data length is at least 1·6 ms and sampling frequency is at least 5 MHz.


Sign in / Sign up

Export Citation Format

Share Document