scholarly journals A Selective Scan Chain Activation Technique for Minimizing Average and Peak Power Consumption

2010 ◽  
Vol E93-D (1) ◽  
pp. 193-196 ◽  
Author(s):  
Yongjoon KIM ◽  
Jaeseok PARK ◽  
Sungho KANG
2021 ◽  
Vol 7 ◽  
pp. 458-468
Author(s):  
Dongwen Chen ◽  
Xiao Hu ◽  
Yong Li ◽  
Jingcheng Chen ◽  
Ruzhu Wang

2020 ◽  
Vol 10 (5) ◽  
pp. 1627 ◽  
Author(s):  
Himanshu Nagpal ◽  
Andrea Staino ◽  
Biswajit Basu

In this work, an algorithm for the scheduling of household appliances to reduce the energy cost and the peak-power consumption is proposed. The system architecture of a home energy management system (HEMS) is presented to operate the appliances. The dynamics of thermal and non-thermal appliances is represented into state-space model to formulate the scheduling task into a mixed-integer-linear-programming (MILP) optimization problem. Model predictive control (MPC) strategy is used to operate the appliances in real-time. The HEMS schedules the appliances in dynamic manner without any a priori knowledge of the load-consumption pattern. At the same time, the HEMS responds to the real-time electricity market and the external environmental conditions (solar radiation, ambient temperature, etc.). Simulation results exhibit the benefits of the proposed HEMS by showing the reduction of up to 70% in electricity cost and up to 57% in peak power consumption.


2013 ◽  
Vol 206 (1) ◽  
pp. 115-145 ◽  
Author(s):  
Kan Fang ◽  
Nelson A. Uhan ◽  
Fu Zhao ◽  
John W. Sutherland

2011 ◽  
Vol 22 (08) ◽  
pp. 1829-1844 ◽  
Author(s):  
MANFRED DROSTE ◽  
INGMAR MEINECKE

Quantitative aspects of systems like consumption of resources, output of goods, or reliability can be modeled by weighted automata. Recently, objectives like the average cost or the longtime peak power consumption of a system have been modeled by weighted automata which are not semiring weighted anymore. Instead, operations like limit superior, limit average, or discounting are used to determine the behavior of these automata. Here, we introduce a new class of weight structures subsuming a range of these models as well as semirings. Our main result shows that such weighted automata and Kleene-type regular expressions are expressively equivalent both for finite and infinite words.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4649 ◽  
Author(s):  
Mohammad Reza Zavvar Sabegh ◽  
Chris Bingham

The rapid proliferation of the ‘Internet of Things’ (IoT) now affords the opportunity to schedule the operation of widely distributed domestic refrigerator and freezers to collectively improve energy efficiency and reduce peak power consumption on the electrical grid. To accomplish this, the paper proposes the real-time estimation of the thermal mass of each refrigerator in a network using on-line parameter identification, and the co-ordinated (ON-OFF) scheduling of the refrigerator compressors to maintain their respective temperatures within specified hysteresis bands commensurate with accommodating food safety standards. A custom model predictive control (MPC) scheme is devised using binary quadratic programming to realize the scheduling methodology which is implemented through IoT hardware (based on a NodeMCU). Benefits afforded by the proposed scheme are investigated through experimental trials which show that the co-ordinated operation of domestic refrigerators can i) reduce the peak power consumption as seen from the perspective of the electrical power grid (i.e., peak load levelling), ii) can adaptively control the temperature hysteresis band of individual refrigerators to increase operational efficiency, and iii) contribute to a widely distributed aggregated load shed for demand side response purposes in order to aid grid stability. Importantly, the number of compressor starts per hour for each refrigerator is also bounded as an inherent design feature of the algorithm so as not to operationally overstress the compressors and reduce their lifetime. Experimental trials show that such co-ordinated operation of refrigerators can reduce energy consumption by ~30% whilst also providing peak load levelling, thereby affording benefits to both individual consumers as well as electrical network suppliers.


2020 ◽  
Vol 10 (4) ◽  
pp. 31
Author(s):  
Arka Maity ◽  
Anuj Pathania ◽  
Tulika Mitra

Multiple multi-threaded tasks constitute a modern many-core application. An accompanying generic Directed Acyclic Graph (DAG) represents the execution precedence relationship between the tasks. The application comes with a hard deadline and high peak power consumption. Parallel execution of multiple tasks on multiple cores results in a quicker execution, but higher peak power. Peak power single-handedly determines the involved cooling costs in many-cores, while its violations could induce performance-crippling execution uncertainties. Less task parallelization, on the other hand, results in lower peak power, but a more prolonged deadline violating execution. The problem of peak power minimization in many-cores is to determine task-to-core mapping configuration in the spatio-temporal domain that minimizes the peak power consumption of an application, but ensures application still meets the deadline. All previous works on peak power minimization for many-core applications (with or without DAG) assume only single-threaded tasks. We are the first to propose a framework, called PkMin, which minimizes the peak power of many-core applications with DAG that have multi-threaded tasks. PkMin leverages the inherent convexity in the execution characteristics of multi-threaded tasks to find a configuration that satisfies the deadline, as well as minimizes peak power. Evaluation on hundreds of applications shows PkMin on average results in 49.2% lower peak power than a similar state-of-the-art framework.


Sign in / Sign up

Export Citation Format

Share Document