scholarly journals Changes in the electromyographic activities of the infraspinatus and posterior deltoid according to abduction angles of the shoulder joint during shoulder external rotation in closed kinetic chain exercise

2016 ◽  
Vol 28 (10) ◽  
pp. 2748-2750 ◽  
Author(s):  
Daehee Lee ◽  
Sangyong Lee ◽  
Seulki Han
2016 ◽  
Vol 25 (3) ◽  
pp. 263-265 ◽  
Author(s):  
Dong-Rour Lee ◽  
Laurentius Jongsoon Kim

Context:Many studies have explored closed kinetic chain (CKC) shoulder exercises (SEs) with a sling because they are safer and more effective than open-chain exercises, especially in early stages of treatment. However, the application of CKC SE in youth baseball players has rarely been attempted, although teenage baseball players also experience shoulder pain.Objective:To investigate the effects of CKC SE on the peak torque of shoulder internal rotation (IR) and external rotation (ER) in youth baseball players.Design:Single-group pretest, posttest.Setting:Biomechanics laboratory.Participants:23 Little League Baseball players with subacromial impingement syndrome.Interventions:The CKC SE with a sling was CKC shoulder-flexion exercise, extension exercise, IR exercise, and ER exercise. This exercise regimen was conducted 2 or 3 times/wk for 8 wk.Main Outcome Measures:The peak torque of shoulder IR and ER was measured using an isokinetic dynamometer. Concentric shoulder rotation was performed, with 5 repetitions at an angular velocity of 60°/s and 15 at 180°/s.Results:The IR and ER peak torque significantly increased at each angular velocity after the exercise program. In particular, the increase in IR and ER peak torque values was statistically significant at an angular velocity of 180°/s.Conclusions:CKC SE was effective in increasing shoulder IR and ER strength, demonstrating its potential benefits in the prevention and treatment of shoulder injury. In addition, increased IR peak torque appears to improve throwing velocity in baseball players.


2019 ◽  
Vol 7 (7_suppl5) ◽  
pp. 2325967119S0042
Author(s):  
Donna Moxley Scarborough ◽  
Shannon E. Linderman ◽  
Javier E. Sanchez ◽  
Eric M. Berkson

Objectives: Ball velocity is generated during the overhead baseball pitch via efficient force transmission up the kinetic chain, from the lower body up and outward to the throwing hand. The kinematic sequence, or the sequential timing pattern of peak angular velocities of body segments during a pitch, provides insight to segment position and motion control that drives the kinetic chain (Putnam CA, 1993). Previous publications report an ideal kinematic sequence (KS) where the timing of each body segment’s peak angular velocity occurs in a proximal-to-distal (PDS) pattern resulting in greater ball velocity and reduction in throwing arm injury risk (Fortenbaugh D, et.al, 2009). A recent study revealed that baseball pitchers perform a variety of KSs (Scarborough DM et.al, 2018). There is no known investigation of the relationship of kinematic sequences and throwing arm joint torques. The purpose of this study was to 1) identify the number of different KSs performed by each pitcher and 2) compare elbow valgus and shoulder external rotation (ER) and extension (Ext) torques between the 3 primary KSs performed during the fastball pitch. Methods: Fourteen collegiate baseball pitchers (20.57 ± 1.91 yr) underwent 3D biomechanical pitch analysis using 20 motion-capture Vicon MX™ cameras (360 Hz). A total of 119 fastball pitches with an average of 8.5 ± 2.71 pitches per player were analyzed. Elbow valgus and shoulder external rotation and extension torques were calculated. The timing of peak angular velocities for the pelvis, trunk, arm, forearm and hand body segments were recorded to generate each pitch’s KS. KSs were then divided into groups based on similarities to the ideal PDS pattern. ANCOVA statistical analyses were performed to compare joint torques across these KS groups with ball velocity as a covariate. Results: A total of 13 different KSs were observed across the 14 pitchers resulting in an average of 3 ± 1.41 different KSs per pitcher. Three different primary KS groups were identified: (1) PDS group: with a KS closest to the ideal PDS pattern (2) the Altered Distal Upper Extremity segment: with the forearm peaking after the hand (the most common group) and (3) Altered Proximal Upper Extremity segment order with the arm segment peaking after the hand (2nd most common). Across these three primary KS patterns, statistically significant differences were noted for elbow valgus torque [F(62,2) = 8.785, ɳ2 = .221, p < 0.00], shoulder external rotation (ER) torque [F(62,2) = 14.127, ɳ2 = .313, p < 0.00] and shoulder extension (Ext) torque [F(62,2) = 13.237, ɳ2 = .299, p < 0.00] (Figure 1). Conclusion: Our findings demonstrate that collegiate baseball pitchers performed an average of 3 different kinematic sequence patterns during fastball pitching. This is the first study to demonstrate a relationship between KSs and elbow and shoulder torque production. As anticipated, the PDS KSs produced the least torque across the elbow and shoulder joints. Alterations in Distal Upper Extremity KS was most common and generated the greatest shoulder Ext torques. Alterations in the Proximal Upper Extremity KS demonstrated the greatest elbow valgus and shoulder ER. Further study of the influence of kinematic sequence on joint torques in the baseball pitch may provide insight into pitching injuries and injury avoidance programs.


Author(s):  
Daina Šmite ◽  
Irēna Upeniece ◽  
Agnese Runce ◽  
Helena Gapeyeva

The function of the shoulder region and cervical spine are regulated by the motor control of the scapula. It is important to selectively activate weak muscles and minimally involve tense muscles to improve scapular motor control. The objective of this study was to compare the activity of scapular muscles and the intramuscular balance during various open and closed kinetic chain exercises. Methods: This study included 20 female sedentary office workers. A surface electromyography was used to analyze the activity of the scapular muscle in the correct exercise starting position and during 6 different exercises. Additionally, the optimal intramuscular balance was examined. Results and conclusions: Open kinetic chain exercises is more suitable than closed kinetic chain exercises for training scapular active stability. Horizontal shoulder abduction with external rotation (scapula retraction and internal rotation) while in the prone position was optimal and could be recommended (as well as its modifications with a resistance band) for training programs to improve scapula active stability.


2021 ◽  
pp. 036354652110398
Author(s):  
Hannah Stokes ◽  
Koco Eaton ◽  
Naiquan (Nigel) Zheng

Background: Throwing arm injuries are common because of the demand on the shoulder. The shoulder is qualitatively checked regularly by team physicians. Excessive instability and joint loading in baseball pitching are risk factors for throwing arm injuries. Knowledge of shoulder flexibility, range of motion, and joint loading may provide new insights for treatments to reduce the likelihood of injury incidence. Purpose: To investigate the relationship among injuries, shoulder external rotational properties, and shoulder joint loading in baseball pitchers. Study Design: Descriptive laboratory study. Methods: Pitching kinetics, shoulder rotational tests, and self-reported injury questionnaires were used to study 177 collegiate baseball pitchers. Pitching motion data were collected at 240 Hz using a motion capture system. A custom program calculated the shoulder joint loading. The shoulder rotational test quantitatively records shoulder range of motion and flexibility using a custom-made wireless device. Self-reported injury questionnaires were filled out during tests and yearly follow-ups. The total length of the study was 5 years. Analysis of variance, chi-square, and regression tests were performed to compare differences among groups and detect correlations with surgery and shoulder joint loadings. Results: There were significant differences in shoulder flexibility among surgery groups. Shoulder external rotational properties during physical examination were significantly associated with shoulder joint loading in baseball pitching. High shoulder external rotation was associated with 14% to 36% lower shoulder posterior force and adduction, internal rotation, and horizontal adduction torque ( P < .05). High shoulder flexibility was associated with 13% higher anterior force ( P < .05). High shoulder external rotation before external rotation torque was applied was associated with 13% to 33% lower shoulder inferior force and adduction, internal rotation, and horizontal adduction torque ( P < .05). There were no significant differences in shoulder joint loading among the surgery groups. Conclusion: Shoulder injuries that require surgery were associated with shoulder external rotation flexibility. High shoulder external rotation may be advantageous because it lowers the force and torque on the shoulder joint. Clinical Relevance: The ability to understand shoulder external rotational properties, joint loading, and injury during baseball pitching helps further our understanding of injury mechanisms. The shoulder rotational test should be used as a screening tool to identify players at risk.


Sign in / Sign up

Export Citation Format

Share Document