scholarly journals Genetic transformation of the Brazilian BR 451 maize variety by the Agrobacterium tumefaciens method

2017 ◽  
Vol 47 (11) ◽  
Author(s):  
Marilia Rodrigues de Silva ◽  
Dielli Aparecida Didoné ◽  
Cássia Canzi Ceccon ◽  
Vinícius de Oliveira Almeida ◽  
Magali Ferrari Grando

ABSTRACT: The asexually gene introduction by genetic engineering has brought enormous possibilities to innovate plant breeding. However, principally because of the low in vitro response, genetic transformation has been restricted to only certain genotypes of agronomically significant species. With the objective of establishing a protocol for genetically transforming the Brazilian BR 451 maize variety through Agrobacterium tumefaciens, it was studied the capacity of plant regeneration in vitro from embryogenic calli cultivated in three regeneration media, each having different growth regulators. It was also evaluated the temperature stress effect on the transformation of the immature embryos with A. tumefaciens EHA 101 containing the plasmid pTF102 with uidA and bar genes. The BR 451 variety embryos and those of the Hi-II hybrid (control) were exposed to three treatments applied as they were being infected with the agrobacteria (a) infection at 25°C; (b) infection at 40°C; (c) pretreatment at 40°C for 5 seconds followed by infection at 25°C. Transformation was determined by uidA gene expression and through the callus resistant to the herbicide Bialaphos® formation. Embryos infected at 40°C showed a higher degree of genetic transformation in the Hi-II, although the same was not noted in BR 451. When growth regulators were added to the culture medium the number of regenerated BR 451 plants showed no increase.

Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Antonio Andrade-Torres ◽  
Carlos Oropeza ◽  
Luis Sáenz ◽  
Tomás González-Estrada ◽  
José Ramírez-Benítez ◽  
...  

AbstractCoconut palm (Cocos nucifera) is a plant species recalcitrant to in vitro morphogenesis and no protocols for the genetic transformation of coconut tissues have been published. The present study aimed to develop a protocol for genetic transformation of this palm species; evaluating reporter genes, transformation methods, and conditions for the use of antibiotics to select transformed plant cells. The gene gusA was first used for Agrobacterium tumefaciens mediated transformation of coconut embryogenic calli. However, endogenous GUS-like activity was found in calli not co-cultured with bacteria. Then essays for Agrobacterium-mediated transformation were developed using green and red fluorescent genes. Both genes are suitable as reporter genes for coconut transformation. In order to establish a protocol for coconut genetic transformation, an approach was used that combined biobalistics to generate micro-wounds in explants, vacuum infiltration and co-culture with Agrobacterium tumefaciens (C58C1 + pER10W-35SRed containing the embryogenesis related gene WUSCHEL). Calli treated with the combined protocol showed red fluorescence with greater intensity and greater area than calli treated with either biobalistics or infiltration, followed by bacteria co-culture. PCR amplification of DNA extracts from transformed embryogenic callus produced a band with the expected size using WUSCHEL primers (862 bp). No band was obtained using the VirE2 primers. This is the first report of transient genetic transformation of C. nucifera and it is the first step toward a protocol that will be useful for the study of the role of genes of interest and for practical applications, such as the improvement of coconut micropropagation via somatic embryogenesis.


1988 ◽  
Vol 7 (4) ◽  
pp. 229-232 ◽  
Author(s):  
John Mackay ◽  
Armand Séguin ◽  
Maurice Lalonde

1992 ◽  
Author(s):  
Dennis Gray ◽  
Victor Gaba

The objective of this study was to gain an understanding of the in vitro regeneration process in watermelon and melon to enable the development of genetic transformation systems. The objectives were met and additional progress, unplanned during the original proposal, was made. Organogenic regeneration in vitro was studied in both melon and watermelon. Genotype played a significant role in regeneration. In melon, epidermal cells were responsible for most regeneration. Methods to obtain in vitro-derived watermelon tetraploids, needed for seedless varieties, were developed. The culture systems were refined so that they could be routinely used for transformation. Particle guns were constructed and Agrobacterium strains were obtained to study the effect of transformation procedures on culture system performance, allowing refinement of transformation protocols. The culture systems were shown to enable the stable transformation of both crops, allowing their future use for insertion of agriculturally-important genes. In addition, we showed that shoot apical meristems might be suitable target tissue for transformation and allow a wider range of genotypes to be used, which is needed for crops as diverse as cucurbits.


2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
DARWIN SILALAHI ◽  
I GEDE PUTU WIRAWAN ◽  
MADE SRITAMIN

Agrobacterium tumefaciens Mediated Genetic Transformation of acvB Gene in Potato (Solanum tuberosum L.). Genetic transformations are now routinely applied to plant mediated by Agrobacterium tumefaciens as the most convenient technique. This study aimed to prove the success of A. tumefaciens mediated genetic transformation in potato. A. tumefaciens LBA (pBI 121) and explant of potato shoot were used in this study. Explants were grown in vitro on Murashige and Skoog media. Transformation was implemented using smear technique by smearing A. tumefaciens to injured explant. Experimental groups consisted of two groups: control group which did not receive transformation treatment and treatment group receiving transformation treatment. Explant growth was observed through the presence of shoots, branches and the shoot height. Explants in the treatment group resulted in a higher number of shoots, branches, and shoot heights compared to control. Phenol compounds appear in explant epidermal tissue, indicating the wounds produced by A. tumefaciens infection, thus the gene predicted to be transformed. Identification by PCR is needed to prove the existence of the acvB gene in potato plants genome, using acvB specific PCR primer as the marker, such as (5?-CCCT CTAG AGAC CCGC GCCA AGGCG-3?) and (5?CGCG TCGA CCTT GTCG GAAAG -3?) with 540-bp in base pair size produced.


2003 ◽  
Vol 2 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Abdul Ghaffoor ◽  
Gul Bahar Shah . ◽  
Kashif Waseem .

2018 ◽  
Vol 236 ◽  
pp. 229-237 ◽  
Author(s):  
Xuehan Li ◽  
Zhenying Jiang ◽  
Yanying Shen ◽  
Feihong Li ◽  
Xinyi Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document