Efficient genetic transformation of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture

PROTOPLASMA ◽  
2012 ◽  
Vol 250 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Smrati Mishra ◽  
Rajender S. Sangwan ◽  
Shilpi Bansal ◽  
Neelam S. Sangwan
1970 ◽  
Vol 19 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Rakha Hari Sarker ◽  
Khaleda Islam ◽  
M.I. Hoque

Agrobacterium-mediated genetic transformation system has been developed for two tomato (Lycopersicon esculentum Mill.) varieties, namely Pusa Ruby (PR) and BARI Tomato-3 (BT-3). Prior to the establishment of transformation protocol cotyledonary leaf explants from the two varieties were cultured to obtain genotype independent in vitro regeneration. Healthy multiple shoot regeneration was obtained from the cut ends of cotyledonary leaf segments for both the varieties on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. The maximum root induction from the regenerated shoots was achieved on half the strength of MS medium supplemented with 0.2 mg/l IAA. The in vitro grown plantlets were successfully transplanted into soil where they flowered and produced fruits identical to those developed by control plants. Transformation ability of cotyledonary leaf explants was tested with Agrobacterium tumefaciens strain LBA4404 harboring binary plasmid pBI121, containing GUS and npt II genes. Transformed cotyledonary leaf explants were found to produce multiple shoots on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. Selection of the transformed shoots was carried out by gradually increasing the concentration of kanamycin to 200 mg/l since kanamycin resistant gene was used for transformation experiments. Shoots that survived under selection pressure were subjected to rooting. Transformed rooted plantlets were transferred to soil. Stable expression of GUS gene was detected in the various tissues from putatively transformed plantlets using GUS histochemical assay.  Key words: In vitro regeneration, transformation, tomato D.O.I. 10.3329/ptcb.v19i1.5004 Plant Tissue Cult. & Biotech. 19(1): 101-111, 2009 (June)


2015 ◽  
Vol 7 (4) ◽  
pp. 471-474
Author(s):  
Owk ANIEL KUMAR ◽  
Songa RAMESH ◽  
Sape SUBBA TATA

An optimal plant propagation method of Physalis angulata L., a medicinally important herbaceous plant species has been developed using axillary meristem explants. Shoot bud proliferation was initiated from axillary meristem explants cultured on MS medium supplemented with various concentrations of 0.5-2.5mg/L/(BAP)/(Zeatin)/(KIN). The maximum in vitro response of shooting frequency of explants (88.1%) and shoots per explant (42) was achieved with medium containing 1.0mg/L BAP. Multiple shoot culture was established by repeated subculturing of the shoot buds of axillary meristems on shoot multiplication medium. Among the subculture media BAP in combination with 1.5mg/L (IAA)+0.25mg/L(GA3) produced maximum shoots per explant (128±0.29) after two weeks of culture. Effective in vitro shoot elongation and rooting was achieved on 1.0mg/L(GA3) and 1.0mg/L(IBA), respectively. Most of the generated shoots were successfully transferred to soil under field conditions. The survival percentage of the transferred plants on soil was found to be 90 per cent.  This protocol can be used for commercial propagation and for future genetic improvement studies.


Author(s):  
Guadalupe Fabiola Arcos-Ortega ◽  
Rafael Antonio Chan-Kuuk ◽  
Wilma Aracely González-Kantún ◽  
Ramón Souza-Perera ◽  
Yumi Elena Nakazawa-Ueji ◽  
...  

2018 ◽  
Vol 150 ◽  
pp. 9-17 ◽  
Author(s):  
Claudia D. Norzagaray-Valenzuela ◽  
Lourdes J. Germán-Báez ◽  
Marco A. Valdez-Flores ◽  
Sergio Hernández-Verdugo ◽  
Luke M. Shelton ◽  
...  

2018 ◽  
Vol 53 (2) ◽  
pp. 133-138 ◽  
Author(s):  
S Khan ◽  
TA Banu ◽  
S Akter ◽  
B Goswami ◽  
M Islam ◽  
...  

An efficient in vitro regeneration system was developed for Rauvolfia serpentina L. through direct and indirect organogenesis from nodal and leaf explants. Among the different growth regulators, MS medium supplemented with 2.0 mg/l BAP, 0.5mg/l IAA and 0.02mg/l NAA found best for the multiple shoot formation from nodal segments. In this combination 98% explants produced multiple shoots and the average number of shoots per explants is 13∙4. The frequency of callus induction and multiple shoot induction from leaves was highest 88% in MS medium supplemented with 2.0 mg/l BAP, where mean number of shoots/explants was 12.5. The highest frequency of root induction (80%) and mean number of roots/plantlets (10) were obtained on half strength of MS medium containing 0.2 mg/l IBA. The rooted plantlets were transferred for hardening following acclimatization and finally were successfully established in the field.Bangladesh J. Sci. Ind. Res.53(2), 133-138, 2018


1988 ◽  
Vol 7 (4) ◽  
pp. 229-232 ◽  
Author(s):  
John Mackay ◽  
Armand Séguin ◽  
Maurice Lalonde

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 617c-617
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Leaf explants of Nicotiana alata Link and Otto. were surface disinfested and cultured on Murashige and Skoog (MS) medium containing 2.66 μm N6-benzyladenine (BA) to promote shoot proliferation. After 5 weeks, proliferated shoots were removed and remaining callus saved. Callus was inoculated with Agrobacterium tumefaciens encoding a senescence-specific promoter SAG12 cloned from Arabidopsis thaliana fused to a Agrobacterium tumefaciens gene encoding isopentenyl transferase which catalyzes cytokinin synthesis. Following inoculation, the callus was cocultivated for 6 days on BA medium. Selection for transgenics was done on BA medium plus 100 mg Kanamycin and 400 mg Ticarcillin (antibiotics) per liter. Proliferating shoots were rooted on MS medium containing antibiotics. Rooted cuttings were transplanted to soil, acclimated and flowered in the greenhouse. Transgenics were outcrossed to a commercial N. alata hybrid. Seed was germinated in vitro on half-strength MS medium plus antibiotics. Segregation of transgenics to nontransgenics was 1:1. Evaluation of leaf senescence on 5-month-old plants showed 2 to 14 times fewer senesced leaves on the transgenic than the nontransgenic plants.


2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
DARWIN SILALAHI ◽  
I GEDE PUTU WIRAWAN ◽  
MADE SRITAMIN

Agrobacterium tumefaciens Mediated Genetic Transformation of acvB Gene in Potato (Solanum tuberosum L.). Genetic transformations are now routinely applied to plant mediated by Agrobacterium tumefaciens as the most convenient technique. This study aimed to prove the success of A. tumefaciens mediated genetic transformation in potato. A. tumefaciens LBA (pBI 121) and explant of potato shoot were used in this study. Explants were grown in vitro on Murashige and Skoog media. Transformation was implemented using smear technique by smearing A. tumefaciens to injured explant. Experimental groups consisted of two groups: control group which did not receive transformation treatment and treatment group receiving transformation treatment. Explant growth was observed through the presence of shoots, branches and the shoot height. Explants in the treatment group resulted in a higher number of shoots, branches, and shoot heights compared to control. Phenol compounds appear in explant epidermal tissue, indicating the wounds produced by A. tumefaciens infection, thus the gene predicted to be transformed. Identification by PCR is needed to prove the existence of the acvB gene in potato plants genome, using acvB specific PCR primer as the marker, such as (5?-CCCT CTAG AGAC CCGC GCCA AGGCG-3?) and (5?CGCG TCGA CCTT GTCG GAAAG -3?) with 540-bp in base pair size produced.


Sign in / Sign up

Export Citation Format

Share Document