scholarly journals Welding and Thermal Spray Processes for Maintenance of Hydraulic Turbine Runners: Case Studies

2021 ◽  
Vol 26 ◽  
Author(s):  
Rodolpho Fernando Váz ◽  
Romildo Tristante ◽  
Anderson Geraldo Marenda Pukasiewicz ◽  
Andre Ricardo Capra ◽  
André Chicoski ◽  
...  

Abstract: Hydraulic runners are susceptible to failures by cracks or wear by erosion, corrosion, or cavitation. The modern runners are fabricated in carbon steel and martensitic stainless steel. Arc welding processes normally do the repair of eroded areas, or cracked parts. Each material or type of repair needs specific criteria, procedures, and precautions to guarantee their success and prevent future issues, like the recurrence of the cracks or reduction of the useful life of the runner by modifications of the original material. Wear-resistant coatings are applied by welding or by thermal spray processes, considering this last one has no metallurgical interaction with the material of the runner, keeping the original properties of the material. For several years the companies Copel GeT, Lactec, UTFPR, and UFPR collaborate on the study of different techniques, methods, and processes to repair hydraulic runners, this work aims to present a short compilation, and examples of some results obtained applied on real runners.

2019 ◽  
Vol 969 ◽  
pp. 601-606
Author(s):  
M. Sree Arravind ◽  
S. Ramesh Kumar ◽  
S. Senthil Kumaran ◽  
D. Venkateswarlu

Plasma Arc Welding (PAW) is one of the important arc welding processes used in electronics, medical, automotive and aerospace industries due its high accuracy and ability of welding any hard materials which is more tolerant to joint misalignment than Laser Beam Welding (LBW) at a lower cost. Thickness of 1.6mm plates were used to obtain full penetration and a strong joint with a very narrow Heat Affected Zone. The present study deals with the effect of mechanical and corrosion resistance properties of butt welded 1.6 mm thick martensitic stainless steel-similar (SS410 and SS410) joints made by plasma arc welding technique. Similar butt Welded joints were analyzed by using mechanical (Bend test, Erichsen cup test, Tensile test) characterization methods. Their corresponding corrosion resistance properties were also investigated by potentiodynamic polarization corrosion testing technique. The tensile strength was found to be 341 MPa for similar SS410 weld. During tensile test the failure occurred on the base metal on both similar joints Keywords: SS304; SS410; PAW; Butt weld; Erichsen Cup Test; Microstructure.


1988 ◽  
Vol 57 (3) ◽  
pp. 164-170
Author(s):  
Akihiko Ihochi ◽  
Tokuji Maruyama

Author(s):  
Mateus Barancelli Schwedersky ◽  
Álisson Fernandes da Rosa ◽  
Marcelo Pompermaier Okuyama ◽  
Régis Henrique Gonçalves e Silva

Author(s):  
Pavel Layus ◽  
Paul Kah ◽  
Viktor Gezha

The Arctic region is expected to play an extremely prominent role in the future of the oil and gas industry as growing demand for natural resources leads to greater exploitation of a region that holds about 25% of the world’s oil and gas reserves. It has become clear that ensuring the necessary reliability of Arctic industrial structures is highly dependent on the welding processes used and the materials employed. The main challenge for welding in Arctic conditions is prevention of the formation of brittle fractures in the weld and base material. One mitigating solution to obtain sufficiently low-transition temperatures of the weld is use of a suitable welding process with properly selected parameters. This work provides a comprehensive review with experimental study of modified submerged arc welding processes used for Arctic applications, such as narrow gap welding, multi-wire welding, and welding with metal powder additions. Case studies covered in this article describe welding of Arctic steels such as X70 12.7-mm plate by multi-wire welding technique. Advanced submerged arc welding processes are compared in terms of deposition rate and welding process operational parameters, and the advantages and disadvantages of each process with respect to low-temperature environment applications are listed. This article contributes to the field by presenting a comprehensive state-of-the-art review and case studies of the most common submerged arc welding high deposition modifications. Each modification is reviewed in detail, facilitating understanding and assisting in correct selection of appropriate welding processes and process parameters.


Sign in / Sign up

Export Citation Format

Share Document