scholarly journals Characterization of bacteriophages infecting clinical isolates of Pseudomonas aeruginosa stored in a culture collection

2013 ◽  
Vol 46 (8) ◽  
pp. 689-695 ◽  
Author(s):  
C.C.S. Zanetti ◽  
R.C.C. Mingrone ◽  
J.J. Kisielius ◽  
M. Ueda-Ito ◽  
A.C.C. Pignatari
Chemotherapy ◽  
2015 ◽  
Vol 61 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Bamidele T. Odumosu ◽  
Bola A. Adeniyi ◽  
Ram Chandra

Background: The characterization of β-lactamase production in Pseudomonasaeruginosa is rarely reported in Nigeria. The objective of this study was to investigate the occurrence and characterize the different β-lactamases as well as mechanisms of fluoroquinolones resistance among P. aeruginosa isolated from various clinical sources from Nigeria. Materials and Method: Isolates were investigated using PCR, RFLP and sequencing for the detection of various β-lactamases and efflux pump regulator genes. Result: The prevalence of OXA-10, AmpC, CTX-M and SHV in P. aeruginosa was 80, 70, 5 and 5%, respectively. The coexistence of blaOXA-10 with blaAmpC, blaSHV and blaCTX-M was reported in 40, 5 and 5% of isolates, respectively. The efflux pump regulator genes mexR and nfxB were both amplified in 45% of the OXA-10-positive isolates. Conclusion: This is the first report of the characterization of OXA-10 extended-spectrum β-lactamases and occurrence of mexR and nfxB efflux regulator genes in clinical isolates of P. aeruginosa in Nigeria.


Microbiology ◽  
2010 ◽  
Vol 156 (5) ◽  
pp. 1448-1458 ◽  
Author(s):  
Sébastien Coyne ◽  
Patrice Courvalin ◽  
Marc Galimand

Pseudomonas aeruginosa is a major human opportunistic pathogen, especially for patients in intensive care units or with cystic fibrosis. Multidrug resistance is a common feature of this species. In a previous study we detected the ant(4′)-IIb gene in six multiresistant clinical isolates of P. aeruginosa, and determination of the environment of the gene led to characterization of Tn6061. This 26 586 bp element, a member of the Tn3 family of transposons, carried 10 genes conferring resistance to six drug classes. The ant(4′)-IIb sequence was flanked by directly repeated copies of ISCR6 in all but one of the strains studied, consistent with ISCR6-mediated gene acquisition. Tn6061 was chromosomally located in six strains and plasmid-borne in the remaining isolate, suggesting horizontal acquisition. Duplication-insertion of IS6100, that ended Tn6061, was responsible for large chromosomal inversions. Acquisition of Tn6061 and chromosomal inversions are further examples of intricate mechanisms that contribute to the genome plasticity of P. aeruginosa.


2017 ◽  
Vol 32 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Hamid Reza Goli ◽  
Mohammad Reza Nahaei ◽  
Mohammad Ahangarzadeh Rezaee ◽  
Alka Hasani ◽  
Hossein Samadi Kafil ◽  
...  

2014 ◽  
Vol 178 (3-4) ◽  
pp. 307-314 ◽  
Author(s):  
Sun Tee Tay ◽  
Azadeh Lotfalikhani ◽  
Negar Shafiei Sabet ◽  
Sasheela Ponnampalavanar ◽  
Sofiah Sulaiman ◽  
...  

1970 ◽  
Vol 16 (5) ◽  
pp. 351-362 ◽  
Author(s):  
M. J. Pickett ◽  
Margaret M. Pedersen

Features of 378 clinical isolates of saccharolytic, nonfermentative Gram-negative rods and 20 reference strains were examined. All but four of the clinical strains were assigned to recognized taxa, namely Acinetobacter, Chromobacterium, Flavobacterium, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas maltophilia, Pseudomonas multivorans, Pseudomonas putida, Pseudomonas stutzeri, and Xanthomonas.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yao Wang ◽  
Leiqiong Gao ◽  
Xiancai Rao ◽  
Jing Wang ◽  
Hua Yu ◽  
...  

2012 ◽  
Vol 56 (12) ◽  
pp. 6154-6159 ◽  
Author(s):  
Dongeun Yong ◽  
Mark A. Toleman ◽  
Jan Bell ◽  
Brett Ritchie ◽  
Rachael Pratt ◽  
...  

ABSTRACTThree clinicalPseudomonas aeruginosaisolates (WCH2677, WCH2813, and WCH2837) isolated from the Women's and Children's Hospital, Adelaide, Australia, produced a metallo-β-lactamase (MBL)-positive Etest result. All isolates were PCR negative for known MBL genes. A gene bank was created, and an MBL gene, designatedblaAIM-1, was cloned and fully characterized. The encoded enzyme, AIM-1, is a group B3 MBL that has the highest level of identity to THIN-B and L1. It is chromosomal and flanked by two copies (one intact and one truncated) of an ISCRelement, ISCR15. Southern hybridization studies indicated the movement of both ISCR15andblaAIM-1within the three different clinical isolates. AIM-1 hydrolyzes most β-lactams, with the exception of aztreonam and, to a lesser extent, ceftazidime; however, it possesses significantly higherkcatvalues for cefepime and carbapenems than most other MBLs. AIM-1 was the first mobile group B3 enzyme detected and signals further problems for already beleaguered antimicrobial regimes to treat seriousP. aeruginosaand other Gram-negative infections.


Sign in / Sign up

Export Citation Format

Share Document