scholarly journals Neonatal screening for four lysosomal storage diseases with a digital microfluidics platform: Initial results in Brazil

2018 ◽  
Vol 41 (2) ◽  
pp. 414-416 ◽  
Author(s):  
Eurico Camargo Neto ◽  
Jaqueline Schulte ◽  
Jamile Pereira ◽  
Heydy Bravo ◽  
Claudio Sampaio-Filho ◽  
...  
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5581-5581
Author(s):  
Juana Ines Navarrete

Abstract INTRODUCTION: The goal of newborn screening is an early detection of inborn erros of metabolism diseases. In Mexico we began newborn screening since 1977 with very few inborn errors of metabolism such as phenylketonuria, galactosemia, congenital hypothyroidism, sickle cell anemia and cytic fibrosis (1). Since that date we have been increasing our newborn screening our newborn screening slowly and now a days we screen in most states of the country 15 inborn errors of metabolism(2). In 2012 we started with some patients through out the country a wider neonatal screening that include 5 lysosomal storage diseases. MATERIAL AND METHODS: Petróleos Mexicanos is a big governmental institution with approximately 10,000 workers and their families. Since 2005 a larger newborn screening has been done to all newborns in this institution through all the country. We test for most aminoacidopathies, including acidurias, hemoglobinopathies, G6PD deficiency, adrenal hyperplasia, cystic fibrosis and biotinidase deficiency; since August 2012 we included 6 lysosomal storage diseases; Gaucher disease, Fabry disease, Hurler disease, Pompe disease, Niemann-Pick type A and B disease and Krabbe disease. RESULTS: Up to date we have screened 10,853 newborns, we have found 9 patients with lysosomal storage diseases. We found 4 newborns with mutations for Fabry disease, 4 newborns with Pompe disease, three were pseudodeficiencies and one was combined heterozygous for a late onset presentation and pseudodeficiencies and 1 patient with Hurler disease (Table 2). We present here our clinical correlation between genotype-phenotype in these patients. We found a frequency in our population of 1 in 2713 newborns for both Fabry and Pompe disease. DISCUSSION: Newborn screening is a major public health achievement that has improve the morbidity and mortality of inborn errors of metabolism. The introduction of newborn screening for lysosomal storage diseases presents new challenges. This is the first latinamerican study of early detection of lysosomal storage diseases made by neonatal screening there are about 11 similar international studies. It is important point out that the most common lysosomal storage disease found in our study was Pompe diseases the pseudodeficiency type and Fabry disease type II with a frequency of 1 in 2713 newborns for both diseases. Spada et al; and Hwu et al; have reported frequencies of 1 in 1250 to 3100 male newborns. The mutation most commonly found was c.1088G>A, (p.R363H) for Fabry disease and c.1726G>A(p.G576S) for Pompe disease. References: 1. Nakamura K, Am J Med Genet Part C, 2011; 157, 63-71. 2. Zhou et al, J. Pediatr 2011 159 1 7-13. 3. Alterescu GM, Clin. Genet 2001:60:46-51. 2001. 4. Desnick R. J.: Enzyme Replacement Therapy and Enhancement therapies for Lysosomal Storage Diseases. J. Inher Metab Dis 2004; 27:385-4013. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Carole Vogler ◽  
Harvey S. Rosenberg

Diagnostic procedures for evaluation of patients with lysosomal storage diseases (LSD) seek to identify a deficiency of a responsible lysosomal enzyme or accumulation of a substance that requires the missing enzyme for degradation. Most patients with LSD have progressive neurological degeneration and may have a variety of musculoskeletal and visceral abnormalities. In the LSD, the abnormally diminished lysosomal enzyme results in accumulation of unmetabolized catabolites in distended lysosomes. Because of the subcellular morphology and size of lysosomes, electron microscopy is an ideal tool to study tissue from patients with suspected LSD. In patients with LSD all cells lack the specific lysosomal enzyme but the distribution of storage material is dependent on the extent of catabolism of the substrate in each cell type under normal circumstances. Lysosmal storages diseases affect many cell types and tissues. Storage material though does not accumulate in all tissues and cell types and may be different biochemically and morphologically in different tissues.Conjunctiva, skin, rectal mucosa and peripheral blood leukocytes may show ultrastructural evidence of lysosomal storage even in the absence of clinical findings and thus any of these tissues can be used for ultrastructural examination in the diagnostic evaluation of patients with suspected LSD. Biopsy of skin and conjunctiva are easily obtained and provide multiple cell types including endothelium, epithelium, fibroblasts and nerves for ultrastructural study. Fibroblasts from skin and conjunctiva can also be utilized for the initiation of tissue cultures for chemical assays. Brain biopsy has been largely replaced by biopsy of more readily obtained tissue and by biochemical assays. Such assays though may give equivical or nondiagnostic results and in some lysosomal storage diseases an enzyme defect has not yet been identified and diagnoses can be made only by ultrastructural examination.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Muna Abed Rabbo ◽  
Yara Khodour ◽  
Laurie S. Kaguni ◽  
Johnny Stiban

AbstractJohann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.


Pathology ◽  
1980 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
W.F. Carey ◽  
P.V. Nelson ◽  
A.C. Pollard

2016 ◽  
Vol 117 (2) ◽  
pp. 66-83 ◽  
Author(s):  
Priya S. Kishnani ◽  
Patricia I. Dickson ◽  
Laurie Muldowney ◽  
Jessica J. Lee ◽  
Amy Rosenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document