scholarly journals Micro-Scale Abrasive Wear Testing of CrN Duplex PVD Coating on Pre-Nitrided Tool Steel

2017 ◽  
Vol 20 (4) ◽  
pp. 1092-1102 ◽  
Author(s):  
Rafael David Mercado-Solis ◽  
José Guadalupe Mata-Maldonado ◽  
Miguel Angel Quinones-Salinas ◽  
Eduardo Rodriguez-de-Anda ◽  
Rumualdo Servín-Castañeda
Alloy Digest ◽  
2020 ◽  
Vol 69 (3) ◽  

Abstract Böhler K100 is a high-carbon, high-chromium (12%), alloy cold-work tool steel that is suitable for medium run tooling in applications where a very good abrasive wear resistance is needed but where demands on chipping resistance are small. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming and machining. Filing Code: TS-788. Producer or source: voestalpine Böhler Edelstahl GmbH & Co.


Alloy Digest ◽  
2019 ◽  
Vol 68 (4) ◽  

Abstract Sandvik APM 2730 is a powder metallurgical alloyed hot-isostatic-pressed high-speed tool steel with abrasive wear resistance and high-compressive strength. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-763. Producer or source: Sandvik Steel Company.


1995 ◽  
Vol 18 (12) ◽  
pp. 777-785 ◽  
Author(s):  
E. Vitale ◽  
P. Giusti

Si-alloyed pyrolitic carbon (PyC) is currently employed in many biomedical devices, due to its fairly good biological compatibility and non biodegradeability. For prosthetic heart valve applications, required to operate safely for many years, the resistance to abrasive wear is one of the limiting factors which must be accurately evaluated. The present study reports on abrasive wear testing of Ti/PyC and PyC/PyC sliding couples. For both couples it was found that the wear behaviour can be shifted from a low wear regime, characterised by very small wear rates and reduced scatter, to a high wear regime, characterised by high wear rates and high scatter, due to the presence of particle contamination coming from the environment and/or from the specimen polishing process. Actual biomedical devices, particularly heart valves, should not experience the high wear regime, due to the absence of any hard particle contamination source. The wear observed in these items is in fact minimal and may depend on mechanisms other than abrasive wear. In these conditions the experimental evaluation of the wear behaviour should definetely be performed by tests on actual devices.


2017 ◽  
Vol 898 ◽  
pp. 1406-1413
Author(s):  
Yu Long Qi ◽  
Hai Yan Chen ◽  
Chen Yang Shu ◽  
Xuan Zhao ◽  
Li Hua Dong ◽  
...  

Soft and hard FeCrNiSi alloy coatings were obtained on 30CrMo alloy steel surface by laser cladding. The phase constitution, microstructure, frictional wear behavior and corrosion resistance of the composite coating were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), three-dimensional non-contact surface mapping, friction and wear testing machine and electrochemical workstation, separately. XRD analysis showed that the cladding layer was mainly composed of Fe-based alloy composition, accompanied by a small amount of cobalt nickel alloy. There were massive protrusions in the interface of the soft sample, and the coating was regularly dendritic. Hard sample coating lines were cluttered, and there was no bulk deposition. Under the same wear condition, the soft coating exhibited serious abrasive wear, while the hard coating had slight abrasive wear behavior. The polarization curves in 3%NaCl solution revealed that the self-corrosion potential of the soft coating was positive shifted more than that the hard coating. The soft coating has better corrosion resistance than the hard coating.


2021 ◽  
Vol 406 ◽  
pp. 448-456
Author(s):  
Oualid Ghelloudj ◽  
Amel Gharbi ◽  
Djamel Zelmati ◽  
Khedidja Bouhamla ◽  
Chems Eddine Ramoul ◽  
...  

This work is a contribution in analyzing structure, tribological behavior and corrosion of AISI L6 hardened tool steel. Structural characterization and tribological behavior of steel were investigated using Optical Microscopy (OM), Scanning electron microscopy (SEM), wear testing by friction on a pin-on-disc Tribometer and corrosion by potentiodynamic polarization. Comparing to the as-received steel, hardening has generated a fine martensitic microstructure causing a 1.5 times hardness increase. Hardening has contributed to improvement of wear resistance as the coefficient of friction has decreased from 0.86 to 0.67μ. An increase in corrosion resistance was observed after hardening treatment.


2011 ◽  
Vol 206 (7) ◽  
pp. 1796-1808 ◽  
Author(s):  
C.A. Llanes Leyva ◽  
Cristina Godoy ◽  
A.C. Bozzi ◽  
J.C. Avelar-Batista Wilson

Sign in / Sign up

Export Citation Format

Share Document