Effect of Heat Treatment on the Structure, Wear and Corrosion of AISI L6 Tool Steel

2021 ◽  
Vol 406 ◽  
pp. 448-456
Author(s):  
Oualid Ghelloudj ◽  
Amel Gharbi ◽  
Djamel Zelmati ◽  
Khedidja Bouhamla ◽  
Chems Eddine Ramoul ◽  
...  

This work is a contribution in analyzing structure, tribological behavior and corrosion of AISI L6 hardened tool steel. Structural characterization and tribological behavior of steel were investigated using Optical Microscopy (OM), Scanning electron microscopy (SEM), wear testing by friction on a pin-on-disc Tribometer and corrosion by potentiodynamic polarization. Comparing to the as-received steel, hardening has generated a fine martensitic microstructure causing a 1.5 times hardness increase. Hardening has contributed to improvement of wear resistance as the coefficient of friction has decreased from 0.86 to 0.67μ. An increase in corrosion resistance was observed after hardening treatment.

2007 ◽  
Vol 14 (05) ◽  
pp. 1007-1013 ◽  
Author(s):  
ESAH HAMZAH ◽  
ALI OURDJINI ◽  
MUBARAK ALI ◽  
PARVEZ AKHTER ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
...  

In the present study, the effect of various N 2 gas flow rates on friction coefficient and surface roughness of TiN -coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N 2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N 2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N 2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.


2010 ◽  
Vol 447-448 ◽  
pp. 681-684 ◽  
Author(s):  
S. Twardy ◽  
Otmann Riemer ◽  
Ekkard Brinksmeier

Micro milling is an appropriate technology for the flexible production of precise micro molds with complex shapes for metal forming processes (e.g. micro deep drawing). Besides high form accuracy micro ball end milling also provides a specific surface topography which can enhance the tribological behavior during the forming processes. This paper is focusing on the tribological behavior of micro structured surfaces generated by micro milling compared to smooth surfaces. The coefficient of friction was investigated on a pin-on-disc test stand for different materials. The results of the tribological tests suggest a relationship between micro structure and coefficient of friction. Finally, the correlations between machining parameters and tribological behavior will be discussed.


2017 ◽  
Vol 14 (3) ◽  
pp. 188-192
Author(s):  
Suraj R. ◽  
Jithish K.S.

Purpose This paper aims to present a comparative study of the wear properties of ferrous welded materials like EN8, EN9 and mild steel (MS). Design/methodology/approach The material is cut into specific dimension after hardfacing and is studied for the wear properties of the material. The wear testing is done on a pin-on-disc apparatus. The microhardness of the material is studied using the Vickers microhardness measuring apparatus. Findings The wear properties of ferrous welded materials like EN8, EN9 and MS are studied. It is found the MS has the least wear when compared to EN8 and EN9. The microhardness of MS is higher than EN8 and EN9, thus making it more wear-resistant than EN8 and EN9. The coefficient of friction in the dry sliding condition is found to be constant throughout the experiment. Research limitations/implications Major restriction is the amount of time required for use-wear analysis and replication experiments that are necessary to produce reliable results. These limitations mean that the analysis of total assemblages with the intention of producing specific results, especially of worked materials, is not feasible. Practical implications Generally, the complexity and rigour of the analysis depend primarily on the engineering needs and secondarily on the wear situation. It has been the author’s experience that simple and basic wear analyses, conducted in the proper manner, are often adequate in many engineering situations. Integral and fundamental to the wear analysis approach is the treatment of wear and wear behaviour as a system property. As a consequence, wear analysis is not limited to the evaluation of the effects of materials on wear behaviour. Wear analysis often enables the identification of nonmaterial solutions or nonmaterial elements in a solution to wear problems. For example, changes in or recommendations for contact geometry, roughness, tolerance and so on are often the results of a wear analysis. Originality/value The value of the work lies in the utility of the results obtained to researchers and users of the EN8, EN9 and EN24 material for their components.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Yathish Narayana Rao K N ◽  
Mohamed Kaleemulla K

Aluminium oxide ceramics have a good thermal conductivity, high strength and stiffness, low coefficient of expansion, these major properties made them adopt in the critical structural designs of aerospace and in advanced machinery. Ceramics is having wide applications in all the structural designs and developments, because of its properties like higher density, hardness, resistance to corrosion and it can stand with very high temperatures. Ceramics is mainly used as reinforcement with aluminium oxide in order to enhance its stiffness and strength. The particles of ceramics can easily combine with aluminium oxide (Al2O3) and it gives an identical property throughout the composite material.


2016 ◽  
Vol 68 (2) ◽  
pp. 233-241 ◽  
Author(s):  
BM Viswanatha ◽  
M Prasanna Kumar ◽  
S Basavarajappa ◽  
TS Kiran

Purpose – This paper aims to investigate the microstructure, hardness and tribological properties of hypoeutectic (Al-7Si) matrix reinforced with fixed quantities of 3 Wt.% graphite (Gr) and x Wt.% SiCp (x = 3, 6 and 9) hybrid composites. Design/methodology/approach – The composites were fabricated by stir cast technique. The microstructure, hardness and tribological measurements were carried out on the base alloy and composites. The tribological investigation was carried out on pin-on-disc wear testing machine under dry sliding condition. Findings – The wear rate decreases with the increase of SiCp into A356-3Gr composites. The composite containing A356-9SiCp-3Gr had better hardness and good wear resistance compared to the base alloy. Scanning electron microscope (SEM) and electro dispersive spectrometry (EDS) images were used to study the reinforcement distribution and worn-out surface of the specimens. Originality/value – The present paper brings out a clear picture of the various events that take place under the worn-out surfaces leading to the generation of mechanical mixed layer.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1237
Author(s):  
Beatriz Vasconcelos ◽  
Ricardo Serra ◽  
João Oliveira ◽  
Carlos Fonseca

This paper reports a simple and cost-effective procedure to coat hydrogenated nitrile butadiene rubber (HNBR) with a well-adherent Ni-P film by using the electroless plating method. A HNBR surface functionalization process was first optimized, creating an interpenetrating network with polyvinylpyrrolidone (PVP). Silver nanoparticles were deposited on PVP and acted as catalysts for the Ni-P film deposition, eliminating the expensive tin-palladium sensitization/activation step. A homogeneous, low phosphorous Ni-P film was obtained after 60–120 min of plating in an alkaline bath, with an average thickness of 3 to 10 µm, respectively. The PVP internetwork played an important role on the strong adhesion of the film, 1.0 ± 0.5 MPa. The tribological behavior of Ni-P-plated HNBR samples was studied for 1, 5 and 10 N applied loads under dry sliding on a pin-on-disc configuration and the coefficient of friction (CoF) was reduced by ~30–49%, compared to uncoated HNBR (loads 1–5N). Based on these results, Ni-P-coated rubber can be regarded as a novel solution for enhancement of the tribological behavior of dynamic seals; it can be regarded as a means to avoid machinery failure. This method offers an alternative to the diamond-like carbon (DLC) coatings.


2013 ◽  
Vol 440 ◽  
pp. 88-91
Author(s):  
P.M. Madhankumar ◽  
S. Ilaiyavel

The knowledge of the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, the wear performances of Zirconium oxide (ZrO2) coating over the surface of electro less nickel plating on aluminum and tool steel substrate is analyzed. The surface morphology of coatings was examined by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) .The wear tests were performed in a pin on disc apparatus as per ASTM G-99 Standard. The coefficient of friction and wear loss are evaluated. The results of the wear test established that coated pins exhibited the lowest average coefficient of friction and the lowest wear loss when compared with uncoated pins.


2019 ◽  
Vol 26 (03) ◽  
pp. 1850156
Author(s):  
GEETHA RAJAMANI ◽  
JAWAHAR PAULRAJ

Nylon ([Formula: see text]), Glass-filled nylon (GFN) composites and hybrid graphene oxide blended GFN (GO-GFN) nanocomposites plates were prepared by blending and subsequent injection molding process. Mechanical tests were conducted to study the tensile property, flexural property and hardness of nylon, GFN and GO-GFN system. The fabricated plates were subjected to abrasive wear testing in Pin-on-disc tribometer. The pin used is aluminium oxide (Al2O3) ceramic tool. The coefficient of friction, frictional force and loading variations were observed and studied to analyze the susceptibility of nylon, GFN and GO-GFN nanopolymer composites for abrasive wear conditions. This experimental study confirmed the enhancement in the abrasive wear resistance behavior of GO-GFN hybrid nanocomposites.


Author(s):  
Mustafa U¨rgen ◽  
K. Kazmanli ◽  
V. Ezirmik ◽  
Ahmet Oztu¨rk ◽  
O. L. Eryilmaz ◽  
...  

Nanocomposite structures composed of hard and soft phases are very promising candidates for tribological applications involving both dry and lubricated sliding. This study aims to compare the wear behavior of copper doped hard nanocomposite nitride coatings under dry and lubricated sliding conditions. These nanocomposite coatings are produced in a cathodic arc-based hybrid PVD coating system and their mechanical and structural properties are fully characterized using electron microscopy and other relevant techniques. Tribological tests were performed in pin on disc and reciprocating wear test machines under dry and lubricated sliding conditions. The differences observed in the tribological behavior of nanocomposite coatings are discussed by taking into consideration the structure and mechanical properties of the coatings and the chemical character of the tribo films formed on sliding surfaces during wear testing.


Alloy Digest ◽  
1998 ◽  
Vol 47 (4) ◽  

Abstract NAK 80 is a precipitation-hardened tool steel for molds with a similar through hardness. The alloy is used when exceptional polishing is required. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on joining and surface treatment. Filing Code: SA-495. Producer or source: International Mold Steels Inc.


Sign in / Sign up

Export Citation Format

Share Document