scholarly journals Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

2013 ◽  
Vol 21 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Camila SABATINI
10.2341/07-63 ◽  
2008 ◽  
Vol 33 (2) ◽  
pp. 155-162 ◽  
Author(s):  
A-K. Lührs ◽  
S. Guhr ◽  
R. Schilke ◽  
L. Borchers ◽  
W. Geurtsen ◽  
...  

Clinical Relevance When using self-etch adhesives to bond composite materials to enamel, there is concern about the ability to achieve bond strengths comparable to approved etch-and-rinse systems. An additional phosphoric acid etching can improve the shear bond strength of self-etch adhesives to enamel.


2015 ◽  
Vol 20 (4) ◽  
pp. 51-56 ◽  
Author(s):  
João Paulo Fragomeni Stella ◽  
Andrea Becker Oliveira ◽  
Lincoln Issamu Nojima ◽  
Mariana Marquezan

OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding.METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%).RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased.CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface.


2017 ◽  
Vol 18 (3) ◽  
pp. 182-187
Author(s):  
Ayah A Al-Asmar ◽  
Khaled S Hatamleh ◽  
Muhanad Hatamleh ◽  
Mohammad Al-Rabab'ah

ABSTRACT Introduction The aim of this study is to evaluate the effect of different combinations of various surface treatments on the shear bond strength (SBS) of repaired composite resin. Materials and methods A total of 122 composite samples were prepared from Filtek Z350 XT. Samples were light cured and stored for 6 weeks. Surface treatment of old composite was done in five groups: Group I: bur roughening + phosphoric acid etching, group II: bur roughening + hydrofluoric acid etching + silane coupling agent, group II: air abrasion + phosphoric acid etching, group IV: air abrasion + phosphoric acid etching + silane coupling agent, group V: air abrasion + hydrofluoric acid etching + silane coupling agent. Bonding agent was applied to all surface-treated old composites and light cured. The fresh composite resin was bonded to treated surfaces and cured and stored in water at 37°C for 6 weeks. Shear bond strength was measured by a universal testing machine. Results Shear bond strength values of all groups were not statistically significant except for group V, which showed statistically significant higher SBS than group III. Conclusion Techniques with readily available materials at the clinic can attain similar SBS to more elaborate technique involving potentially hazardous materials. How to cite this article Al-Asmar AA, Hatamleh KS, Hatamleh M, Al-Rabab'ah M. Evaluating Various Preparation Protocols on the Shear Bond Strength of Repaired Composite. J Contemp Dent Pract 2017;18(3):182-187.


2014 ◽  
Vol 39 (6) ◽  
pp. E250-E260 ◽  
Author(s):  
TA Imbery ◽  
T Gray ◽  
F DeLatour ◽  
C Boxx ◽  
AM Best ◽  
...  

SUMMARY Objective Repairing composite restorations may be a more conservative treatment than replacing the entire restoration. The objective of this in vitro study was to determine the best repair method by measuring flexural, diametral tensile, and shear bond strength of repaired composites in which the surfaces were treated with chemical primers (Add & Bond or Silane Bond Enhancer), a bonding agent (Optibond Solo Plus [OBSP]), or mechanical retention with a bonding agent. Methods Filtek Supreme Ultra shade B1B was placed in special molds to fabricate specimens that served to test the flexural, diametral tensile, or shear strength of the inherent resin substrate. The same molds were modified to make specimens for testing repair strength of the resin. Repairs were made immediately or after aging in deionized water at 37°C for seven days. All repair sites were finished with coarse Sof-Lex discs to simulate finishing new restorations or partially removing aged restorations. Repair surfaces were treated with one of the following: 1) phosphoric-acid etching and OBSP; 2) Add & Bond; 3) phosphoric-acid etching, Silane Bond Enhancer, and OBSP; or 4) quarter round bur, phosphoric-acid etching, and OBSP. Specimens were placed back in the original molds to fabricate specimens for diametral tensile or flexural testing or in an Ultradent jig to make specimens for shear bond testing. Composite resin in shade B5B was polymerized against the treated surfaces to make repairs. Two negative control groups for the three testing methods consisted of specimens in which repairs were made immediately or after aging without any surface treatments. Controls and experimental repairs were aged (water 37°C, 24 hours) before flexural, diametral tensile, or shear testing in an Instron Universal testing machine at a crosshead speed of 0.5 mm/min. Results Experimental flexural repair strengths ranged from 26.4% to 88.6% of the inherent substrate strength. Diametral tensile repair strengths ranged from 40% to 80% of the inherent substrate strength, and shear bond strength repairs ranged from 56% to 102%. Geometric means were statistically analyzed with two-way analysis of variance on their log-transformed values. Significant differences were determined using Tukey honestly significant difference (p<0.05). Conclusions Depending on the mechanical property being tested, surface treatments produced different results. OBSP produced more consistent results than chemical primers.


2015 ◽  
Vol 40 (6) ◽  
pp. E242-E249 ◽  
Author(s):  
L Bermudez ◽  
M Wajdowicz ◽  
D Ashcraft-Olmscheid ◽  
K Vandewalle

SUMMARY An improvement in bond strength to enamel has been demonstrated with the use of phosphoric acid prior to bonding with self-etch methacrylate-based adhesive agents. No research has evaluated the effect of phosphoric-acid etching of enamel with a newer self-etch silorane adhesive. The purpose of this study was to evaluate the shear-bond strength of composite to enamel using the self-etch silorane adhesive compared to other self-etching methacrylate-based adhesives, with or without a separate application of phosphoric acid. Bovine incisors were sectioned using a diamond saw and mounted in plastic pipe. The bonding agents were applied to flattened enamel surfaces with or without the application of 35% phosphoric acid. The bonded tooth specimens were inserted beneath a mold, and composite was placed incrementally and light cured. The specimens were stored for 24 hours and six months in water and tested in shear. Data were analyzed with a three-way analysis of variance (ANOVA) to evaluate the effects of surface treatment, adhesive agent, or time on the bond strength of composite to bovine enamel (α=0.05). Significant differences were found between the groups based on surface treatment (p<0.01) or adhesive agent (p<0.01), but not on time (p=0.19), with no significant interactions (p>0.14). Phosphoric-acid etching of bovine enamel significantly increased the bond strength of the self-etch methacrylate and the silorane adhesives. The methacrylate-based adhesives had significantly greater bond strength to enamel than the silorane adhesive.


2019 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Mohamad Mofateh ◽  
Mashallah Khanemasjedi ◽  
Meysam Noori

Background & Aim. The aim of this study was to compare the bond strength of the orthodontic brackets bonded to the composite restorations following preparations by CO2 and Er;Cr:YSGG lasers and conventional phosphoric acid etching adult orthodontic treatment. Materials & Methods. Class V cavities were prepared on the buccal surfaces of 60 acrylic teeth and restored by composite after etching by 37% acid-etch gel. The specimens’ surfaces were prepared randomly by 37% phosphoric acid etching or Er;Cr:YSGG or CO2 lasers. Central metal brackets were installed on the teeth's surfaces. The shear bond strength of the brackets to composite surfaces was measured by the crosshead speed of 1mm/min. The scores of the remaining adhesive on the surfaces were calculated by ARI index in 5 scales. The shear bond strength values and the ARI scores were analyzed by one-way ANOVA and Chi-square tests respectively. Results. There were no significant differences among the surface preparation methods regarding bond strength between composite surfaces and the brackets. Most specimens showed ARI index of 3 in the acid phosphoric etching. In CO2 laser application, ARI index of 2 and 3 were more frequent. In Er;Cr:YSGG laser, ARI index of 3 was predominant. No significant differences existed among 3 modalities regarding scores of ARI index. Conclusion. Irradiation of CO2 and Er;Cr:YSGG lasers is recommended for clinical applications due to adequate bond strength created between the brackets and composite surfaces as well as advantages such as lower chair time and no damage to the gingival tissues.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2902
Author(s):  
Phoebe Burrer ◽  
Hoang Dang ◽  
Matej Par ◽  
Thomas Attin ◽  
Tobias T. Tauböck

This study investigated the effect of over-etching and prolonged application time of a universal adhesive on dentin bond strength. Ninety extracted human molars were ground to dentin and randomly allocated into nine groups (G1–9; n = 10 per group), according to the following acid etching and adhesive application times. In the control group (G1), phosphoric acid etching was performed for 15 s followed by application of the universal adhesive Scotchbond Universal (3M) for 20 s, as per manufacturer’s instructions. In groups G2–5, both the etching and adhesive application times were either halved, doubled, quadrupled, or increased eightfold. In groups G6–9, etching times remained the same as in G2–5 (7.5 s, 30 s, 60 s, and 120 s, respectively), but the adhesive application time was set at 20 s as in the control group (G1). Specimens were then restored with a nanofilled composite material and subjected to microtensile bond strength testing. Bond strength data were statistically analyzed by ANOVA and Tukey’s post-hoc tests (α = 0.05). The relationship of bond strength with etching and adhesive application time was examined using linear regression analysis. Treatment of dentin with halved phosphoric acid etching and adhesive application times (G2) resulted in a significant bond strength decrease compared to the control group (G1) and all other test groups, including the group with halved acid etching, but 20 s of adhesive application time (G6). No significant differences in bond strength were found for groups with multiplied etching times and an adhesive application time of 20 s or more, when compared to the control group (G1). In conclusion, a universal adhesive application time of at least 20 s is recommended when bonding to over-etched dentin.


2015 ◽  
Vol 34 (2) ◽  
pp. 219-226 ◽  
Author(s):  
Hiroshi NOGAWA ◽  
Hiroyasu KOIZUMI ◽  
Osamu SAIKI ◽  
Haruto HIRABA ◽  
Mitsuo NAKAMURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document