scholarly journals Experimental life cycle of Lagochilascaris minor Leiper, 1909

1992 ◽  
Vol 34 (4) ◽  
pp. 277-287 ◽  
Author(s):  
Dulcinéa Maria Barbosa Campos ◽  
Lindomar G. Freire Filha ◽  
Miguel Alípio Vieira ◽  
Julieta Machado Paçô ◽  
Moacir A. Maia

The life cycle of Lagochilascaris minor was studied using material collected from human lesion and applying the experimental model: rodents (mice, hamsters), and carnivorae (cats, dogs). In mice given infective eggs, orally, hatch of the third stage larvae was noted in the gut wall, with migration to liver, lungs, skeletal musculature and subcutaneous tissue becoming, soon after, encysted. In cats infected with skinned carcasses of mice (60 to 235 days of infection) it was observed: hatch of third stage larvae from the nodules (cysts) in the stomach, migration through the oesophagus, pharynx, trachea, related tissues (rhino-oropharynx), and cervical lymphonodes developing to the mature stage in any of these sites on days 9-20 post inoculation (P.I.). There was no parasite development up to the mature stage in cats inoculated orally with infective eggs, which indicates that the life cycle of this parasite includes an obligatory intermediate host. In one of the cats (fed carcass of infected mice) necropsied on day 43 P.I., it was observed the occurence of the self-infective cycle of L. minor in the lung tissues and in the cervical region which was characterized by the finding of eggs in different stages of development, third stage larvae and mature worms. It's believed that some component of the carnivorae gastrointestinal tracts may preclude the development of third stage larvae from L. minor eggs what explains the interruption of the life cycle in animals fed infective eggs. It's also pointed out the role of the intermediate host in the first stages of the life cycle of this helminth.

2005 ◽  
Vol 79 (2) ◽  
pp. 169-176 ◽  
Author(s):  
J.A. Shears ◽  
C.R. Kennedy

AbstractPrevious studies on the life history of the nematode eel specialist Paraquimperia tenerrima (Nematoda: Quimperiidae) have failed to determine whether an intermediate host is required in the life cycle. In the laboratory, eggs failed to hatch below 10°C, hatching occurring only at temperatures between 11 and 30°C. Survival of the free-living second stage larvae (L2) was also temperature dependent, with maximal survival between 10 and 20°C. Total survival of the free-living stages (eggs and L2) is unlikely to exceed a month at normal summer water temperatures, confirming that parasite could not survive the 6 month gap between shedding of eggs in spring and infection of eels in early winter outside of a host. Eels could not be infected directly with L2, nor could a range of common freshwater invertebrate species. Third stage larvae (L3) resembling P. tenerrima were found frequently and abundantly in the swimbladder of minnows Phoxinus phoxinus from several localities throughout the year and were able to survive in this host in the laboratory for at least 6 months. Third stage larvae identical to these larvae were recovered from minnows experimentally fed L2 of P. tenerrima, and eels infected experimentally with naturally and experimentally infected minnows were found to harbour fourth stage larvae (L4) and juvenile P. tenerrima in their intestines. Finally, the whole life cycle from eggs to adult was completed in the laboratory, confirming that minnows are an obligate intermediate host for P. tenerrima.


2018 ◽  
Vol 15 (4) ◽  
pp. e1010 ◽  
Author(s):  
Manuel López-Gómez ◽  
Soledad Verdejo-Lucas

Meloidogyne javanica has showed less reproductive success than M. incognita in watermelon genotypes. This study was conducted to elucidate the low reproduction of M. javanica in watermelon. The post-infection development of M. javanica in watermelon ‘Sugar Baby’ was determined at progressively higher initial population (Pi) levels at two time points during the life cycle. Plants were inoculated with 0, 25, 50, 100, 200, and 300 second-stage juveniles (J2)/plant. The increase in Pi was correlated with the penetration rates (R2= 0.603, p<0.001) and total numbers of nematodes in the root (R2 =0.963, p< 0.001) but there was no correlation between the Pi and the reproduction factor (eggs/plant/Pi). The population in the roots at 26 days post-inoculation (dpi) consisted primarily of third-stage juveniles (J3) with a small presence of J2 and fourth stages, and egg-laying females. The dominance of the J3, when egg-laying females are expected, point to the malfunction of the feeding sites that failed to support nematode development beyond the J3 stage. The similarities in egg-laying females at 26 and 60 dpi imply the disruption of the life cycle. Watermelon compensated for M. javanica parasitism by increasing vine length (19% to 33%) and dry top weight (40%) in comparison with the non-inoculated plants. The area under the vine length progress curve was significantly larger as the Pi progressively increased (R²=0.417, p<0.001). Physiological variation was detected between the M. incognita populations. M. arenaria had less ability to invade watermelon roots than did M. incognita and M. javanica.


Parasitology ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 557-568 ◽  
Author(s):  
N. MEJRI ◽  
A. HEMPHILL ◽  
B. GOTTSTEIN

SUMMARYAs more facts emerge regarding the ways in whichE. multilocularis-derived molecules trigger the host immune response and modulate the host-parasite interplay, it becomes possible to envisage how the parasite can survive and proliferate in its intermediate host, while in other hosts it dies out. Through effects on cells of both the innate and adaptive arms of the immune response,E. multiloculariscan orchestrate a range of outcomes that are beneficial not only to the parasite, in terms of facilitating its intrahepatic proliferation and maturation, and thus life cycle over all, but also to its intermediate host, in limiting pathology. The present review deals with the role of metacestode surface molecules as well as excretory/secretory (E/S) metabolic products of the parasite in the modulation of the host responses such as to optimize its own survival.


1967 ◽  
Vol 41 (4) ◽  
pp. 309-312 ◽  
Author(s):  
John M. Hamilton ◽  
A. W. McCaw

Two experiments were undertaken to assess the role of the mouse in the life-cycle of Aelurostrongyhis abslrusus. In the first, 18 mice were fed first stage larvae and killed one month later. At post-mortem and histopathological examinations larvae were not demonstrated and attempts to extract larvae from a proportion of the mice were also negative. In the second experiment, 24 mice were fed heavy doses of first stage larvae. Subsequent examinations failed to reveal the presence of larvae and post-mortem and histopathological examinations performed on two cats, each of which had been fed with six of the mice, failed to reveal the presence of lungworms. It is concluded that mice do not act as intermediate host for Aelurostrongyhis abstrusus.


1992 ◽  
Vol 66 (1) ◽  
pp. 53-61 ◽  
Author(s):  
K. Ando ◽  
H. Tokura ◽  
H. Matsuoka ◽  
D. Taylor ◽  
Y. Chinzei

ABSTRACTThe life cycle of Gnathostoma nipponicum was examined by field survey and by experimental infection of animals with the larvae. Naturally infected larval G. nipponicum were found in loaches, catfish, and snakes. Experimentally, loaches, killifishes, frogs, salamanders, mice, and rats were successfully infected with the early third-stage larvae of G. nipponicum obtained from copepods (the first intermediate host), whereas snakes, quails, and weasels were not. Frogs, snakes, quails, and rats were experimentally infected with the advanced third-stage larvae (AdL3) from loaches. These results reveal that some species of fishes, amphibians and mammals can act as the second intermediate host and that some species of reptiles, birds and mammals can act as a paratenic host. The life cycle was completed in weasels, the definitive host, which were infected with AdL3 from loaches and started to evacuate eggs of G. nipponicum in faeces on days 65–90 postinfection.


2009 ◽  
Vol 54 (4) ◽  
Author(s):  
Mounia Amarouayache ◽  
Farid Derbal ◽  
M. Kara

AbstractStudies revealed the role of Artemia salina as intermediate host in the life-cycle of a cestode species parasitizing flamingos, i.e. Flamingolepis liguloides. Cysticercoids of this parasite were found for the first time in the Algerian populations of Artemia salina in winter of 2000 and 2001 in Chott Marouane and spring of 2003 in Sebkha Ez-Zemoul. The prevalence ranged between 10 and 33% for the two examined Artemia populations. The intensity of infection was 1–3 cysticercoids per individual. The abdomen was the most targeted site of infection (95% of the population of Sebkha Ez-Zemoul) followed by the thorax and the ovisac. Infected females were less fertile than uninfected ones (24.83 vs 43.70 cysts/brood) in Sebkha Ez-Zemoul or castrated in Chott Marouane.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Erich W. Zinser ◽  
Tom L. McTier ◽  
Nicole S. Kernell ◽  
Debra J. Woods

Abstract Background The cryopreservation of filarial nematodes has been studied for nearly 70 years. Largely, these studies examined the effectiveness of cryopreservation methods by using the post-thaw survival of microfilariae (mf) and the development to third-stage larvae (L3s) following inoculation into a competent insect vector. Only one study reported complete reestablishment of a filarial nematode (Brugia malayi) life-cycle in a competent vertebrate host from cryopreserved stock. Expanding on this previous research, a cryopreservation method was developed to cryopreserve the mf of the dog heartworm, Dirofilaria immitis. Methods A combination of cryoprotectants, dimethyl sulfoxide (DMSO) and polyvinyl pyrolidone (PVP) at 6% and 4 mM, respectively, provided acceptable post-thaw survival of mf that developed into L3s in Aedes aegypti. L3s developed from cryopreserved and freshly collected mf in mosquitoes were inoculated into ferrets and dogs and were assessed after a sufficient duration post-inoculation for development into adult heartworms. Results Fewer adult heartworms derived from cryopreserved stocks of mf were recovered from ferrets compared to adult heartworms derived from freshly collected mf, and the former were smaller by weight and length. The onset of patency (circulating mf) occurred at similar post-inoculation time points and at similar mf densities in dogs infected with L3s sourced from cryopreserved stocks or freshly collected mf. Adults derived from cryopreserved mf have survived and produced viable mf for more than 3 years in dogs. Approximately 60% of inoculated L3s were recovered as adults from dogs at 2 and 3.5 years post-inoculation. Conclusions The results from these direct comparisons demonstrate that cryopreserved mf can develop into L3s in vector mosquitoes and that these L3s are infective to both dogs and ferrets, where they undergo normal development into adult worms. These worms are able to mate and produce viable mf and complete the heartworm lifecycle in dog. Graphical Abstract


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Bianca B. Kojin ◽  
Ines Martin-Martin ◽  
Helena R. C. Araújo ◽  
Brian Bonilla ◽  
Alvaro Molina-Cruz ◽  
...  

Abstract Background The invasion of the mosquito salivary glands by Plasmodium sporozoites is a critical step that defines the success of malaria transmission and a detailed understanding of the molecules responsible for salivary gland invasion could be leveraged towards control of vector-borne pathogens. Antibodies directed against the mosquito salivary gland protein SGS1 have been shown to reduce Plasmodium gallinaceum sporozoite invasion of Aedes aegypti salivary glands, but the specific role of this protein in sporozoite invasion and in other stages of the Plasmodium life cycle remains unknown. Methods RNA interference and CRISPR/Cas9 were used to evaluate the role of A. aegypti SGS1 in the P. gallinaceum life cycle. Results Knockdown and knockout of SGS1 disrupted sporozoite invasion of the salivary gland. Interestingly, mosquitoes lacking SGS1 also displayed fewer oocysts. Proteomic analyses confirmed the abolishment of SGS1 in the salivary gland of SGS1 knockout mosquitoes and revealed that the C-terminus of the protein is absent in the salivary gland of control mosquitoes. In silico analyses indicated that SGS1 contains two potential internal cleavage sites and thus might generate three proteins. Conclusion SGS1 facilitates, but is not essential for, invasion of A. aegypti salivary glands by P. gallinaceum and has a dual role as a facilitator of parasite development in the mosquito midgut. SGS1 could, therefore, be part of a strategy to decrease malaria transmission by the mosquito vector, for example in a transgenic mosquito that blocks its interaction with the parasite.


Sign in / Sign up

Export Citation Format

Share Document