scholarly journals Blood-sucking lice may disseminate Trypanosoma cruzi infection in baboons

2001 ◽  
Vol 43 (5) ◽  
pp. 271-276 ◽  
Author(s):  
Enrique R. ARGAÑARAZ ◽  
Gene B. HUBBARD ◽  
Larissa A. RAMOS ◽  
Allen L. FORD ◽  
Nadjar NITZ ◽  
...  

Trypanosoma cruzi (Schyzotrypanum, Chagas, 1909), and Chagas disease are endemic in captive-reared baboons at the Southwest Foundation for Biomedical Research, San Antonio, Texas. We obtained PCR amplification products from DNA extracted from sucking lice collected from the hair and skin of T. cruzi-infected baboons, with specific nested sets of primers for the protozoan kinetoplast DNA, and nuclear DNA. These products were hybridized to their complementary internal sequences. Selected sequences were cloned and sequencing established the presence of T. cruzi nuclear DNA, and minicircle kDNA. Competitive PCR with a kDNA set of primers determined the quantity of approximately 23.9 ± 18.2 T. cruzi per louse. This finding suggests that the louse may be a vector incidentally contributing to the dissemination of T. cruzi infection in the baboon colony.

2021 ◽  
Author(s):  
Antonio R. L. Teixeira ◽  
Alessandro O Sousa ◽  
Clever C Gomes ◽  
Adriana A Sá ◽  
Rubens J Nascimento ◽  
...  

Background: The Trypanosoma cruzi infection renders the transfer of the mitochondrion kinetoplast DNA minicircle sequences into the host’s genome. The Aves are refractory to the infection, but chicks hatched from the T. cruzi inoculated eggs integrate the DNA minicircle sequences into the germ line cells. Rabbits, mice and chickens with the minicircle sequences mutations develop the Chagas cardiomyopathy and the DNA transfer underpins the heart disease. Methodology: The PCR with the specific primer sets revealed the Protist nuclear DNA and the kinetoplast DNA in the agarose gels bands probed with the radiolabel specific sequences from tissues of the T. cruzi-infected rabbits and of the mice. A targetprimer TAIL-PCR amplification employing primer sets from the chickens, rabbits and mice, in combination with primer sets from the the T. cruzi kinetoplast minicircle sequences was used. This approach led us to disclose the integration sites of the kinetoplast DNA biomarker, then, used to monitor the effect of multidrug treatment of the T. cruzi infected mice. Principal findings: The Southern hybridization, clone and sequence of the amplification products revealed the DNA minicircle sequences integrations sites in the LINE transposable elements. An array of inhibitors of eukaryote cells division was used to arrest the DNA transfer. It was shown that nine out of 12 inhibitors prevented the kinetoplast DNA integration into the macrophage genome. The multidrug treatment of the acutely T. cruzi-infected mice with Benznidazole, Azidothymidine and Ofloxacin lessened circa 2.5-fold the rate of the minicircle sequences integrations in the mouse genome and inhibited the rejection of the target heart cells. Conclusion and significance: The T. cruzi mitochondrion kinetoplast minicircle sequences transfer driven pathogenesis of Chagas disease is an ancient Cross-Kingdom DNA phenomenon of evolution and, therefore, paradigm research with effective purposing inhibitors is needed.


2020 ◽  
Vol 5 (2) ◽  
pp. 87
Author(s):  
Aaron W. Tustin ◽  
Ricardo Castillo-Neyra ◽  
Laura D. Tamayo ◽  
Renzo Salazar ◽  
Katty Borini-Mayorí ◽  
...  

Blood-sucking triatomine bugs transmit the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease. We measured the prevalence of T. cruzi infection in 58,519 Triatoma infestans captured in residences in and near Arequipa, Peru. Among bugs from infected colonies, T. cruzi prevalence increased with stage from 12% in second instars to 36% in adults. Regression models demonstrated that the probability of parasite acquisition was roughly the same for each developmental stage. Prevalence increased by 5.9% with each additional stage. We postulate that the probability of acquiring the parasite may be related to the number of feeding events. Transmission of the parasite does not appear to be correlated with the amount of blood ingested during feeding. Similarly, other hypothesized transmission routes such as coprophagy fail to explain the observed pattern of prevalence. Our results could have implications for the feasibility of late-acting control strategies that preferentially kill older insects.


2000 ◽  
Vol 42 (3) ◽  
pp. 157-161 ◽  
Author(s):  
M. Socorro BRAGA ◽  
Liana LAURIA-PIRES ◽  
Enrique R. ARGAÑARAZ ◽  
Rubens J. NASCIMENTO ◽  
Antonio R. L. TEIXEIRA

We used a molecular method and demonstrated that treatment of the chronic human Trypanosoma cruzi infections with nitroderivatives did not lead to parasitological cure. Seventeen treated and 17 untreated chronic Chagas' disease patients, with at least two out of three positive serologic assays for the infection, and 17 control subjects formed the study groups. PCR assays with nested sets of T. cruzi DNA primers monitored the efficacy of treatment. The amplification products were hybridized to their complementary internal sequences. Untreated and treated Chagas' disease patients yielded PCR amplification products with T. cruzi nuclear DNA primers. Competitive PCR was conducted to determine the quantity of parasites in the blood and revealed < 1 to 75 T. cruzi/ml in untreated (means 25.83 ± 26.32) and < 1 to 36 T. cruzi/ml in treated (means 6.45 ± 9.28) Chagas' disease patients. The difference between the means was not statistically significant. These findings reveal a need for precise definition of the role of treatment of chronic Chagas' disease patients with nitrofuran and nitroimidazole compounds.


2014 ◽  
pp. 61-66 ◽  
Author(s):  
Luisa Fernanda Duarte ◽  
Oscar Roberto Flórez ◽  
Giovanna Rincón ◽  
Clara Isabel González

Objective: To compare the diagnostic performance of seven methods to determine Trypanosoma cruzi infection in patients with chronic Chagas disease. Methods: Analytical study, using the case-control design, which included 205 people (patients with Chagasic cardiomyopathy, n= 100; control group, n= 105). Three enzyme linked immunosorbent assays, one indirect hemagglutination assay and one immunochromatographic test were assessed. Additionally, DNA amplification was performed via the PCR method using kinetoplast and nuclear DNA as target sequences. For the comparative analysis of diagnostic tests, the parameters used were sensitivity, specificity, positive and negative predictive values, Receiver Operator Characteristic (ROC), positive and negative likelihood ratio, as well as κ quality analysis. Results: The commercial Bioelisa Chagas test showed the highest sensitivity (98%), specificity (100%), and positive and negative predictive values; additionally it had the highest discriminatory power. Otherwise, the amplification of T. cruzi DNA in blood samples showed low values of sensitivity (kinetoplast DNA= 51%, nuclear DNA= 22%), but high values of specificity (100%), and moderate to low discriminatory ability. Conclusion: The comparative analysis among the different methods suggests that the diagnostic strategy of T. cruzi infection in patients with chronic Chagas disease can be performed using ELISA assays based on recombinant proteins and/or synthetic peptides, which show higher diagnosis performance and can confirm and exclude the diagnosis of T. cruzi infection. The molecular methods show poor performance when used in the diagnosis of patients with chronic Chagas disease.


2016 ◽  
Vol 60 (10) ◽  
pp. 5867-5877 ◽  
Author(s):  
Richard M. B. M. Girard ◽  
Marcell Crispim ◽  
Ivana Stolić ◽  
Flávia Silva Damasceno ◽  
Marcelo Santos da Silva ◽  
...  

ABSTRACTTrypanosoma cruziis the etiological agent of Chagas disease, affecting approximately 10 million people in the Americas and with some 40 million people at risk. The objective of this study was to evaluate the anti-T. cruziactivity of three new diamidines that have a 3,4-ethylenedioxy extension of the thiophene core, designated MB17, MB19, and MB38. All three diamidines exhibited dose-dependent inhibition of epimastigote replication. The mechanisms of action of these diamidines were investigated. Unlike MB17 and MB19, MB38 exhibited a significant increase in the number of annexin-propidium iodide double-labeled cells compared to levels in control parasites. As MB17 had shown a lower 50% inhibitory concentration (IC50) against epimastigote growth, the mechanism of action of this drug was studied in more detail. MB17 triggered a decrease in the intracellular ATP levels. As a consequence, MB17 affected the genomic DNA and kinetoplast DNA (kDNA) and impaired the parasite cell cycle. Moreover, MB17 caused DNA fragmentation, with a more severe effect on kDNA than on nuclear DNA, resulting in dyskinetoplastic cells. MB17 was tested for toxicity and effectiveness for the treatment of infected CHO-K1cells, exhibiting a 50% cytotoxic concentration (CC50) of 13.47 ± 0.37 μM and an IC50of 0.14 ± 0.12 μM against trypomastigote release. MB17 also diminished the infection index by 60% at 0.5 μM. In conclusion, despite belonging to the same family, these diamidines have different efficiencies. To summarize, MB17 was the most potent of these diamidines against epimastigotes, producing DNA damage preferentially in kDNA, impairing the parasite cell cycle, and decreasing the infection index and trypomastigote release from infected mammalian host cells, with a high selectivity index (SI) (<90). These data suggest that MB17 could be an interesting lead compound againstT. cruzi.


Parasitology ◽  
1993 ◽  
Vol 106 (2) ◽  
pp. 151-162 ◽  
Author(s):  
P. A. O. Majiwa ◽  
M. Maina ◽  
J. N. Waitumbi ◽  
S. Mihok ◽  
E. Zweygarth

SUMMARYTrypanosoma (Nannomonas) congolense comprises morphologically identical but genetically heterogeneous parasites infective to livestock and other mammalian hosts; three different genotypes of this parasite have been described previously. Restriction enzyme fragment length polymorphisms (RFLPs) in both kinetoplast DNA minicircle and nuclear DNA sequences, and randomly amplified polymorphic deoxyribonucleic acid (RAPD) patterns have been used here to demonstrate the existence of another type of T. (N.) congolense that is genotypically distinct from those that have so far been characterized at the molecular level. A highly repetitive, tandemly arranged DNA sequence and oligonucleotide primers, for use in polymerase chain reaction (PCR) amplification are described, which can be used for specific identification of the trypanosome and its distinction from others within the Nannomonas subgenus.


Sign in / Sign up

Export Citation Format

Share Document