scholarly journals South american rattlesnake venom: its hemolytic power

1989 ◽  
Vol 22 (4) ◽  
pp. 171-175 ◽  
Author(s):  
Édimo Garcia de Lima ◽  
Paulo Inácio da Costa ◽  
Carlos Julio Laure

The hemolytic power of rattlesnake venom (Crotalus durissus terrificus) was Studied. A high percentage of sample with negative hemolytic power was detected when sheep red blood cells were used. A large number of venoms with hemolytic power, though with a low hemolysis percentage, were detected when liquid, recently extracted venom was used. When crystallized venom was used under the same experimental conditions, a higher percentage ofpositivityfor hemolysis was obtained. When the results obtained on agar plates were compared to those obtained in test tubes, a large number of animals with a higher percentage of hemolysis were detected, though this value was not proportional to the number of animals showing positive plate hemolysis. When the hemolytic power of these venoms was tested on human red blood cells, a large percentage of animals with venoms having a low hemolytic power was also detected. Hemolytic power was much greater when human red blood cells were tested with crystallized venom. The preparation of red blood cells also had an important effect and the use of red blood cells from defibrinated blood is recommended. We conclude that rattlesnake venom has hemolytic power that increases when the venom is crystallized. Red blood cells should be properly preparedfor the lysis reactions. We suggest that the lytic power of the venom is related to venom concentration and to the purity of its fractions.

Toxicon ◽  
1999 ◽  
Vol 37 (10) ◽  
pp. 1341-1357 ◽  
Author(s):  
Y. Oshima-Franco ◽  
S. Hyslop ◽  
J. Prado-Franceschi ◽  
M.A. Cruz-Höfling ◽  
L. Rodrigues-Simioni

Toxicon ◽  
1998 ◽  
Vol 36 (12) ◽  
pp. 1927-1937 ◽  
Author(s):  
Adriana C. Mancin ◽  
Andreimar M. Soares ◽  
Silvia H. Andrião-Escarso ◽  
Vitor M. Faça ◽  
Lewis J. Greene ◽  
...  

Toxicon ◽  
2019 ◽  
Vol 168 ◽  
pp. S36
Author(s):  
Edson hideaki yoshida ◽  
Murilo melo juste dini ◽  
Isadora caruso fontana oliveira ◽  
José Carlos Cogo ◽  
Denise Grotto ◽  
...  

2005 ◽  
Vol 24 (4) ◽  
pp. 233-242 ◽  
Author(s):  
Saraguaci Hernandez-Oliveira ◽  
Marcos Hikari Toyama ◽  
Daniela Oliveira Toyama ◽  
Sergio Marangoni ◽  
Stephen Hyslop ◽  
...  

1997 ◽  
Vol 109 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Jeffrey C. Freedman ◽  
Terri S. Novak

Current-voltage curves for DIDS-insensitive Cl− conductance have been determined in human red blood cells from five donors. Currents were estimated from the rate of cell shrinkage using flow cytometry and differential laser light scattering. Membrane potentials were estimated from the extracellular pH of unbuffered suspensions using the proton ionophore FCCP. The width of the Gaussian distribution of cell volumes remained invariant during cell shrinkage, indicating a homogeneous Cl− conductance among the cells. After pretreatment for 30 min with DIDS, net effluxes of K+ and Cl− were induced by valinomycin and were measured in the continued presence of DIDS; inhibition was maximal at ∼65% above 1 μM DIDS at both 25°C and 37°C. The nonlinear current-voltage curves for DIDS-insensitive net Cl− effluxes, induced by valinomycin or gramicidin at varied [K+]o, were compared with predictions based on (1) the theory of electrodiffusion, (2) a single barrier model, (3) single occupancy, multiple barrier models, and (4) a voltage-gated mechanism. Electrodiffusion precisely describes the relationship between the measured transmembrane voltage and [K+]o. Under our experimental conditions (pH 7.5, 23°C, 1–3 μM valinomycin or 60 ng/ml gramicidin, 1.2% hematocrit), the constant field permeability ratio PK/PCl is 74 ± 9 with 10 μM DIDS, corresponding to 73% inhibition of PCl. Fitting the constant field current-voltage equation to the measured Cl− currents yields PCl = 0.13 h−1 with DIDS, compared to 0.49 h−1 without DIDS, in good agreement with most previous studies. The inward rectifying DIDS-insensitive Cl− current, however, is inconsistent with electrodiffusion and with certain single-occupancy multiple barrier models. The data are well described either by a single barrier located near the center of the transmembrane electric field, or, alternatively, by a voltage-gated channel mechanism according to which the maximal conductance is 0.055 ± 0.005 S/g Hb, half the channels are open at −27 ± 2 mV, and the equivalent gating charge is −1.2 ± 0.3.


1993 ◽  
Vol 102 (1) ◽  
pp. 99-123 ◽  
Author(s):  
J D Bisognano ◽  
J A Dix ◽  
P R Pratap ◽  
T S Novak ◽  
J C Freedman

Upon exposure of human red blood cells to hypertonic sucrose, the fluorescence of the potentiometric indicator 3,3'-dipropylthiadicarbocyanine iodide, denoted diS-C3(5), displays a biphasic time course indicating the rapid development of an inside-positive transmembrane voltage, followed by a slow DIDS (4,4'-diisothiocyano-2,2'-disulfonic acid stilbene)-sensitive decline of the voltage. In addition to monitoring membrane potential, proton (or hydroxide) fluxes were measured by a pH stat method, cell volume was monitored by light scattering, and cell electrolytes were measured directly when red cells were shrunken either with hypertonic NaCl or sucrose. Shrinkage by sucrose induced an initial proton efflux (or OH- influx) of 5.5 mu eq/g Hb.min and a Cl shift of 21-31 mu eq/g Hb in 15 min. Upon shrinkage with hypertonic NaCl, the cells are initially close to Donnan equilibrium and exhibit no detectable shift of Cl or protons. Experiments with the carbonic anhydrase inhibitor ethoxzolamide demonstrate that for red cell suspensions exposed to air and shrunken with sucrose, proton fluxes mediated by the Jacobs-Stewart cycle contribute to dissipation of the increased outward Cl concentration gradient. With maximally inhibitory concentrations of ethoxzolamide, a residual proton efflux of 2 mu eq/g Hb.min is insensitive to manipulation of the membrane potential with valinomycin, but is completely inhibited by DIDS. The ethoxzolamide-insensitive apparent proton efflux may be driven against the electrochemical gradient, and is thus consistent with HCl cotransport (or Cl/OH exchange). The data are consistent with predictions of equations describing nonideal osmotic and ionic equilibria of human red blood cells. Thus osmotic equilibration after shrinkage of human red blood cells by hypertonic sucrose occurs in two time-resolved steps: rapid equilibration of water followed by slower equilibration of chloride and protons (or hydroxide). Under our experimental conditions, about two-thirds of the osmotically induced apparent proton efflux is mediated by the Jacobs-Stewart cycle, with the remainder being consistent with mediation via DIDS-sensitive HCl cotransport (or Cl/OH exchange).


Sign in / Sign up

Export Citation Format

Share Document