scholarly journals Soil water retention and s index after crop rotation and chiseling

2011 ◽  
Vol 35 (6) ◽  
pp. 1927-1937 ◽  
Author(s):  
Juliano Carlos Calonego ◽  
Ciro Antonio Rosolem

Soil compaction can be minimized either mechanically or biologically, using plant species with vigorous root systems. An experiment was carried out with soybean (Glycine max) in rotation with triticale (X Triticosecale) and sunflower (Helianthus annuus) in fall-winter associated with pearl millet (Pennisetum glaucum), grain sorghum (Sorghum bicolor) or sunn hemp (Crotalaria juncea) in spring. Crop rotation under no-till was compared with mechanical chiseling. The experiment was carried out in Botucatu, São Paulo State, Brazil. Soil quality was estimated using the S index and soil water retention curves (in the layers of 0-0.05, 0.075-0.125, 0.15-0.20, 0.275-0.325, and 0.475-0.525 m deep). Crop rotation and chiseling improved soil quality, increasing the S index to over 0.035 to a depth of 20 cm in the soil profile. The improved soil quality, as shown by the S index, makes the use of mechanical chiseling unnecessary, since after 3 years the soil physical quality under no-tilled crop rotation and chiseling was similar.

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Danilo Sisto ◽  
Massimo Iovino

The multi-height (low, L = 3 cm; intermediate, M = 100 cm; high, H = 200 cm) Beerkan run methodology was applied on both a minimum tilled (MT) (i.e., up to a depth of 30 cm) and a no-tilled (NT) bare loam soil, and the soil water retention curve was estimated by the BEST-steady algorithm. Three indicators of soil physical quality (SPQ), i.e., macroporosity (Pmac), air capacity (AC) and relative field capacity (RFC) were calculated to assess the impact of water pouring height under alternative soil management practices. Results showed that, compared to the reference low run, M and H runs affected both the estimated soil water retention curves and derived SPQ indicators. Generally, M–H runs significantly reduced the mean values of Pmac and AC and increased RFC for both MT and NT soil management practices. According to the guidelines for assessment of SPQ, the M and H runs: (i) worsened Pmac classification of both MT and NT soils; (ii) did not worsen AC classification, regardless of soil management parameters; (iii) worsened RFC classification of only NT soil, as a consequence of insufficient soil aeration. For both soil management techniques, a strong negative correlation was found between the Pmac and AC values and the gravitational potential energy, Ep, of the water used for the infiltration runs. A positive correlation was detected between RFC and Ep. The relationships were plausible from a soil physics point of view. NT soil has proven to be more resilient than MT. This study contributes toward testing simple and robust methods capable of quantifying soil degradation effects, due to intense rainfall events, under different soil management practices in the Mediterranean environment.


Author(s):  
João H. Caviglione

ABSTRACT One big challenge for soil science is to translate existing data into data that is needed. Pedotransfer functions have been proposed for this purpose and they can be point or parametric when estimating the water retention characteristics. Many indicators of soil physical quality have been proposed, including the S-Index proposed by Dexter. The objective of this study was to assess the use of pedotransfer functions for soil water retention to estimate the S-index under field conditions in the diversity of soils of the Paraná state. Soil samples were collected from 36 sites with textures ranging from sandy to heavy clay in the layers of 0-0.10 and 0.10-0.20 m and under two conditions (native forest and cultivated soil). Water content at six matric potentials, bulk density and contents of clay, sand and silt were determined. Soil-water retention curve was fitted by the van Genuchten-Mualem model and the S-index was calculated. S-index was estimated from water retention curves obtained by the pedotransfer function of Tomasella (point and parametric). Although the coefficient of determination varied from 0.759 to 0.895, modeling efficiency was negative and the regression coefficient between observed and predicted data was different from 1 in all comparisons. Under field conditions in the soil diversity of the Paraná state, restrictions were found in S-index estimation using the evaluated pedotransfer functions.


1991 ◽  
Vol 6 (3) ◽  
pp. 106-113 ◽  
Author(s):  
Preston G. Sullivan ◽  
David J. Parrish ◽  
John M. Luna

AbstractWinter annual legume cover crops can reduce nitrogen (N) fertilizer requirements and provide a water-conserving mulch to a subsequent crop. A two-year study was designed to test cover crops of rye (Secale cereale L.), hairy vetch (Vicia villosa Roth), and big/lower vetch (Vicia grandiflora Scopoli) for their ability to produce N and to conserve soil water for a succeeding corn (Zea mays L.) crop. We measured the cover crops' biomass, N yield, carbon (C) to N ratio, and influence on a subsequent corn crop grown under two tillage regimes (disk tillage or no-till). Nitrogen content in cover crop biomass at time of corn planting ranged from 37 to 187 kg/ha. Pure stands of hairy vetch and a mixture of hairy vetch plus bigflower vetch had generally higher N yields, and rye was lowest. Rye growing in association with hairy vetch had lower C:N ratios than rye growing alone. Legume C:N ratios remained generally unchanged from earlier (disked) to later (herbicide) kill dates, but total N and biomass typically increased in the last 2 to 3 weeks before corn planting. Soil water retention was affected by tillage in some cases; no-till was superior to disk incorporation in each case where there was a tillage effect. Cover crops with greater biomass resulted in greater soil water retention. Among cover crops, uptake ofNby corn was greater from hairy vetch or hairy vetch plus bigflower vetch mixture. Biological immobilization of N appeared to be reducing N uptake by corn grown in rye residues. Corn in nonlegume plots fertilized with 140 or 210 kg N/ha took up more N than corn following legumes, but there was no corresponding yield increase. Corn biomass yields following the cover crops ranged from 8.6 to 18.0 Mg/ha with no additional fertilizer N. In the second year of the study, average corn yields following hairy vetch (15.3 Mg/ha) or hairy-bigflower vetch mixtures (16.4 Mg/ha) were not statistically different from corn yields produced by a 140 kg N/ha fertilizer rate (17.4 Mg/ha). These results suggest N from a legume cover crop can replace or substantially reduce fertilizer N requirements in corn production systems in the Appalachian region.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 367 ◽  
Author(s):  
Gema Guzmán ◽  
Alberto-Jesus Perea-Moreno ◽  
José Gómez ◽  
Miguel Cabrerizo-Morales ◽  
Gonzalo Martínez ◽  
...  

Soil quality is usually assessed through the measurement of selected soil properties. However, in spite of the diversity of the chosen properties, use of the soil water retention curve, like the pressure head or the specific water capacity at the inflection point, provides relevant information of degradation or improvement of soil. The main aim of this study was to evaluate the methods based on these indices in the evaluation of short-term changes of olive cropped soils under typical Mediterranean agricultural conditions. For this reason, soil properties (bulk density, hydraulic conductivity, aggregates stability, and organic matter content) were measured in a short-term trial settled in two olive orchards under different soil managements: tillage and cover crop. Several sampling areas were also distinguished: (i) along the inter tree row and under the canopies’ projection and (ii) at 0–10 cm and 10–20 cm depth. In addition, water retention curves were determined and fitted using two models (van Genutchen’s and Kosugi’s) in order to obtain the inflection point and therefore the S index. This index is the maximum value of the slope of the soil water retention curve and is related to soil quality. At the two sites, changes in soil management, even after a brief period of two years, had a relatively quick effect, especially in organic matter content along the inter tree row. The use of indices based on soil water retention curves helps to detect soil degradation or improvement changes. Future research, including the inclusion of more soil types and longer time periods, might lead to the development of more refined tools for the assessment of soil health.


2017 ◽  
Vol 16 (4) ◽  
pp. 869-877
Author(s):  
Vasile Lucian Pavel ◽  
Florian Statescu ◽  
Dorin Cotiu.ca-Zauca ◽  
Gabriela Biali ◽  
Paula Cojocaru

2021 ◽  
pp. 51495
Author(s):  
Ruth M. Barajas‐Ledesma ◽  
Vanessa N. L. Wong ◽  
Karen Little ◽  
Antonio F. Patti ◽  
Gil Garnier

Sign in / Sign up

Export Citation Format

Share Document