scholarly journals Pig slurry and nutrient accumulation and dry matter and grain yield in various crops

2014 ◽  
Vol 38 (3) ◽  
pp. 949-958 ◽  
Author(s):  
Cledimar Rogério Lourenzi ◽  
Carlos Alberto Ceretta ◽  
Gustavo Brunetto ◽  
Eduardo Girotto ◽  
Tadeu Luis Tiecher ◽  
...  

Pig slurry (PS) represents an important nutrient source for plants and using it as fertilizer makes greater nutrient cycling in the environment possible. The aim of this study was to assess how PS application over a period of years can affect grain yield, dry matter production and nutrient accumulation in commercial grain and cover crops. The experiment was carried out in an experimental area of the Universidade Federal de Santa Maria, in Santa Maria, RS, Brazil, from May 2000 to January 2008. In this period, 19 grain and cover crops were grown with PS application before sowing, at rates of 0, 20, 40 and 80 m³ ha-1. The highest PS rate led to an increase in nutrient availability over the years, notably of P, but also of nutrients that are potentially toxic to plants, especially Cu and Zn. The apparent recovery of nutrients by commercial grain and cover crops decreased with the increasing number of PS applications to the soil. Accumulated dry matter production of the crops and maize grain yield were highest at an annual application rate of 80 m³ ha-1 PS. However, common bean yield increased up to 20 m³ ha-1 PS, showing that the crop to be grown should be considered to define the application rate.

1982 ◽  
Vol 22 (115) ◽  
pp. 76 ◽  
Author(s):  
KA Boundy ◽  
TG Reeves ◽  
HD Brooke

The effect of serial planting on dry matter production, leaf area, grain yield and yield components cf Lupinus angustifoiius (cvv. Uniwhite, Uniharvest and Unicrop) and L. albus (cv. Ultra) was investigated in field plots at Rutherglen in 1973 and 1974. Delayed planting reduced dry matter production of all cultivars, and leaf area for Ultra. Differences in dry matter partitioning were observed between the late flowering Uniharvest, and the early flowering Unicrop and Ultra. In Uniharvest, delayed plantings resulted in a greater proportion of total dry matter being produced during the flowering phase, whereas the reverse was true for Unicrop and Ultra. The later flowering cultivars showed marked grain yield and yield component reduction with later sowing. Yields were reduced by 160.6 kg/ha and 222.5 kg/ha for each week's delay in sowing Uniharvest and Uniwhite, respectively. This effect was offset in the early flowering cultivars by greater development of lateral branches. In addition, when Unicrop and Ultra were planted in April, pod and flower abortion on the main stem resulted from low temperatures at flowering time. Optimum sowing time was early April for Uniwhite and Uniharvest, and early May for Unicrop and Ultra. Excellent vegetative growth under ideal moisture conditions highlighted the poor harvest indices of lupins and the scope for genetic improvement in the genus.


1990 ◽  
Vol 41 (3) ◽  
pp. 449 ◽  
Author(s):  
GK McDonald

The growth and yield of two lines of uniculm barley, WID-103 and WID-105, were compared over a range of sowing rates (50-400 kg/ha) with the commercial varieties Galleon and Schooner. The experiments were conducted at Strathalbyn, S.A., in 1986, 1987 and 1988 and at the Waite Agricultural Research Institute in 1987. A third tillered variety, Clipper, was included in the comparison in 1988. Over the three years plant populations measured early in the season ranged from 39/m2 to 709/m2, and grain yields from 97 to 41 1 g/m2. Dry matter production at ear emergence increased with greater plant density, and both the tillered varieties and the uniculm lines showed similar responses to higher sowing rates. At maturity, dry matter production of the tillered barleys was greater than or equal to that of the uniculms and the harvest indices (HIs) of the two types were similar. Consequently, grain yields of the tillered types were greater than or equal to the yields of the uniculms. Over the four experiments the tillered varieties had a 6% higher yield. The number of ears/m2 was the yield component most affected by plant density in both the tillered and uniculm barleys. The uniculm lines had more spikelets/ear, but tended to set fewer grains/spikelet and produce smaller kernels. The experiments failed to demonstrate any advantage of the uniculm habit to the grain yield of barley. These results differ from previous experiments that showed that a uniculm line, WID-101, had a higher yield than the tillered variety Clipper. It is suggested that the uniculm habit per se was not the cause of this higher yield, but its higher HI resulted in it outyielding Clipper. Current varieties, however, have HIs similar to the uniculm lines and yield equally to or more than the uniculm barleys examined. To further improve the grain yield of uniculm barley, greater dry matter production is necessary as the HIs of these lines are already high.


2017 ◽  
Vol 4 (3) ◽  
pp. 157-164
Author(s):  
Mohammad Issak ◽  
Most Moslama Khatun ◽  
Amena Sultana

The experiment was conducted to study the effect of salicylic acid (SA) as foliar spray on yield and yield contributing characters of BRRI Hybrid dhan3.The experiment was laid out in a randomized complete block design (RCBD) with three replications and six treatment combinations as, T1: 0 μM SA, T2: 200 μM SA, T3: 400 μM SA, T4: 600 μM SA, T5: 800 μM SA and T6: 1000 μM SA. The results revealed that biomass production, dry matter production and yield and yield contributing characters were significantly increased due to the foliar application of SA. At the maximum tillering (MT) stage, the highest biomass production (15.0 t/ha) and dry matter production was observed in T3 treatment. Treatments T4, T5 and T6 showed significant variation on the effective tillers/hill. The maximum effective tillers/hill were found in the treatment T6. The percentages of spikelet sterility were decreased with increasing the level of SA and the percentage of filled grains/panicle were increased with increasing level of SA. The insect infestation was reduced with increasing level of SA to up to 1000 μM. The maximum grain yield (9.21 t/ha) and straw yield (9.22 t/ha) was found in the treatment T6 which was identical to T5. On the other hand, in all cases the lowest results were found in the control treatment. The result showed that grain yield of rice increased with increasing level of SA to up to 1000 μM (T6 treatment). Our results suggest that foliar spray of SA might be applied to increase the yield of hybrid rice in Bangladesh.Res. Agric., Livest. Fish.4(3): 157-164, December 2017


2019 ◽  
Vol 42 (6) ◽  
pp. 615-625 ◽  
Author(s):  
M. Mauad ◽  
R. S. Santana ◽  
T. H. Carli ◽  
F. Carli ◽  
A. C. T. Vitorino ◽  
...  

1989 ◽  
Vol 40 (5) ◽  
pp. 421 ◽  
Author(s):  
P.J. Hocking

A study was made of the seasonal changes in dry matter production and patterns of nutrient accumulation by Phragmites australis in a nutrient-enriched swamp in inland Australia. The density of live shoots was highest (224 m-2) in October, but the peak standing crop of live shoots (9890 g m-2) occurred in early May. Peak below-ground biomass (21 058 g m-2) occurred in early August. Rhizome biomass constituted 75% of the below-ground biomass, and showed a distinct seasonal pattern. Net annual above-ground primary production (NAAP), estimated by the maximum-minimum method, was 9513 g m-2. Correction for shoot mortality and leaf shedding before, and production after, the maximum standing crop was attained increased NAAP to 12 898 g m-2. Whole plant production estimated by the maximum-minimum method was 9960 g m-2, and the corrected estimate was 14 945 g m-2. A model of dry-matter production indicated that translocation of carbohydrate from rhizomes could have provided 33% of the dry matter of shoots. About 23% of the dry matter of shoots was redistributed to below-ground organs during senescence. Concentrations of N, P, K, S, Cl and Cu declined, but concentrations of Ca, Mg, Na, Fe and Mn increased as shoots aged. Concentrations of N, P and Zn in rhizomes reached maxima in winter, and decreased in spring. Rhizomes usually contained the greatest quantity of a nutrient in the whole plant, and roots usually had less than 25% of the total plant content. There were seasonal fluctuations in the quantities of N, P, K, Zn and Cu in rhizomes. Nutrient accumulation by live shoots was underestimated by 22-55% using the maximum-minimum method. Nutrient budgets showed considerable internal cycling of N, P, K, S and Cu from rhizomes to developing shoots in spring, and from senescing shoots to rhizomes during autumn and winter.


1974 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
B. A. C. Enyi

SUMMARYApplication of dimecron to cowpea plants increased grain yield, its effect being more pronounced in widely spaced plants and those planted in March. Dimecron increased grain yield by encouraging greater leaf area development, by increasing the number of flowering inflorescences and the number of pods set per inflorescence, and by decreasing the number of shrivelled pods. March planting encouraged greater dry matter production than January and May planting. Dimecron application decreased the number of Ootheca beningseni, reduced the proportion of leaf damaged by these insects, and reduced the number of plants infested with aphids and Acidodis larvae.


2006 ◽  
Vol 46 (1) ◽  
pp. 93 ◽  
Author(s):  
G. K. McDonald

High spatial and temporal variability is an inherent feature of dryland cereal crops over much of the southern cereal zone. The potential limitations to crop growth and yield of the chemical properties of the subsoils in the region have been long recognised, but there is still an incomplete understanding of the relative importance of different traits and how they interact to affect grain yield. Measurements were taken in a paddock at the Minnipa Agriculture Centre, Upper Eyre Peninsula, South Australia, to describe the effects of properties in the topsoil and subsoil on plant dry matter production, grain yield and plant nutrient concentrations in two consecutive years. Wheat (Triticum aestivum L. cv. Worrakatta) was grown in the first year and barley (Hordeum vulgare L. cv. Barque) in the second. All soil properties except pH showed a high degree of spatial variability. Variability in plant nutrient concentration, plant growth and grain yield was also high, but less than that of most of the soil properties. Variation in grain yield was more closely related to variation in dry matter at maturity and in harvest index than to dry matter production at tillering and anthesis. Soil properties had a stronger relationship with dry matter production and grain yield in 1999, the drier of the two years. Colwell phosphorus concentration in the topsoil (0–0.15 m) was positively correlated with dry matter production at tillering but was not related to dry matter production at anthesis or with grain yield. Subsoil pH, extractable boron concentration and electrical conductivity (EC) were closely related. The importance of EC and soil extractable boron to grain yield variation increased with depth, but EC had a greater influence than the other soil properties. In a year with above-average rainfall, very little of the variation in yield could be described by any of the measured soil variables. The results suggest that variation in EC was more important to describing variation in yield than variation in pH, extractable boron or other chemical properties.


Sign in / Sign up

Export Citation Format

Share Document