scholarly journals Water status and gas exchange of umbu plants (Spondias tuberosa Arr. Cam.) propagated by seeds and stem cuttings

2007 ◽  
Vol 29 (2) ◽  
pp. 355-358 ◽  
Author(s):  
José Moacir Pinheiro Lima Filho

The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.

1988 ◽  
Vol 28 (3) ◽  
pp. 315 ◽  
Author(s):  
SJ Blaikie ◽  
FM Martin ◽  
WK Mason ◽  
DJ Connor

The water relations of white clover and paspalum as monocultures and components of a mixed pasture were studied on a normal and a modified soil profile during the interval between 2 successive irrigations. Responses of individual species were similar in monocultures and mixed pastures. On the normal profile white clover was the first species to react to soil water deficit when the rate of leaf elongation fell by 33% to about 10 mm/day after 30 mm of cumulative evaporation minus rainfall (E - R). This was followed by a reduction in dawn and midday leaf water potential at around 50 mm E - R. After 65 mm E - R, leaf elongation had ceased. In contrast, paspalum showed no signs of water shortage until 70-80 mm E - R. At this stage both the rate of leaf elongation and midday leaf water potential fell. After 90 mm E - R the dawn leaf water potential fell and by 120 mm E - R leaf elongation was negligible. Modification of the profile increased soil water availability by allowing more extraction of water at depth in the profile. This delayed the onset of water stress by about 40 mm E - R in both species. These observations show that the common irrigation interval of 60-90 mm E - R in northern Victoria is likely to restrict pasture yields because it causes a period of soil water deficit stress, especially for white clover, and the development of leaf area is impeded, increasing the time taken for canopies to recover maximum productivity after grazing. To overcome these limitations farmers will have to water more frequently or modify the soil profile to provide pastures with a better water supply.


1981 ◽  
Vol 8 (3) ◽  
pp. 347 ◽  
Author(s):  
MJ Fisher ◽  
DA Charles-Edwards ◽  
MM Ludlow

The response was measured of stomatal conductance and leaf photosynthesis to changing leaf water potential in the legume siratro subjected to a sequence of I-week cycles of increasing soil water deficit followed by watering. The response of stomatal conductance was described using a continuous mathematical function, which is more robust and accurate than the usual discontinuous linear function used to analyse such data. After seven successive cycles of water deficit, there was no apparent adjustment of the short-term response of leaf conductance to leaf water potential.


2015 ◽  
Vol 33 (2) ◽  
pp. 164-173 ◽  
Author(s):  
Seyed Mehdi Jazayeri ◽  
Yurany Dayanna Rivera ◽  
Jhonatan Eduardo Camperos-Reyes ◽  
Hernán Mauricio Romero

Water supply is the main limiting factor that affects oil palm (Elaeis guineensis Jacq.) yield. This study aimed to evaluate the gas exchange and photosynthetic capacity, determine the physiological effects and assess the tolerance potential of oil palm genotypes under water-deficit conditions. The two oil palm commercial genotypes IRHO1001 and IRHO7010 were exposed to soil water potentials of -0.042 MPa (field capacity or well-watered) or -1.5 MPa (drought-stressed). The leaf water potential and gas exchange parameters, including photosynthesis, stomatal conductance, transpiration and water use efficiency (WUE), as well as the photosynthesis reduction rate were monitored at 4 and 8 weeks after treatment. The IRHO7010 genotype showed fewer photosynthesis changes and a smaller photosynthetic reduction under the prolonged water deficit conditions of 23% at 4 weeks after the treatment as compared to 53% at 8 weeks after treatment, but the IRHO1001 genotype showed 46% and 74% reduction at the two sampling times. 'IRHO7010' had a higher stomatal conductance and transpiration potential than 'IRHO1001' during the water shortage. The WUE and leaf water potential were not different between the genotypes during dehydration. The data suggested that 'IRHO7010' had a higher photosynthetic capacity during the drought stress and was more drought-tolerant than 'IRHO1001'.


1965 ◽  
Vol 1 (1) ◽  
pp. 23-32
Author(s):  
J. P. Hudson

SummaryIt is suggested that irrigation should ideally be based on two sets of measurements, i.e. of conditions in the leaf and of cumulative evaporation rates respectively, on the assumption that the question 'When to irrigate ? ’ can best be answered from a knowledge of leaf water potential and the daytime behaviour of stomata, and the question ‘How much water to apply?’ from a knowledge of the current soil water deficit. It is emphasized that there is no unique or fixed relation between leaf water potential and soil water deficit, and since neither can be deduced from the other it is advisable to measure both in critical experimental work on irrigation. Various methods of measuring leaf water potential and evaporation rates are discussed, and their value in experimental work assessed.


1989 ◽  
Vol 16 (3) ◽  
pp. 241 ◽  
Author(s):  
NZ Saliendra ◽  
FC Meinzer

Stomatal conductance, leaf and soil water status, transpiration, and apparent root hydraulic conductance were measured during soil drying cycles for three sugarcane cultivars growing in containers in a greenhouse. At high soil moisture, transpiration and apparent root hydraulic conductance differed considerably among cultivars and were positively correlated, whereas leaf water potential was similar among cultivars. In drying soil, stomatal and apparent root hydraulic conductance approached zero over a narrow (0.1 MPa) range of soil water suction. Leaf water potential remained nearly constant during soil drying because the vapor phase conductance of the leaves and the apparent liquid phase conductance of the root system declined in parallel. The decline in apparent root hydraulic conductance with soil drying was manifested as a large increase in the hydrostatic pressure gradient between the soil and the root xylem. These results suggested that control of stomatal conductance in sugarcane plants exposed to drying soil was exerted primarily at the root rather than at the leaf level.


1978 ◽  
Vol 18 (92) ◽  
pp. 423 ◽  
Author(s):  
MJ Fisher

Following burning (day 0) of a water-stressed sward of green panic and siratro, measurements were made both on unburned plants and on regrowth of burned plants of leaf water potential (�s) and stomatal conductance (gs) at 1.00 p.m. and of leaf extension. In the unburned plants �s, remained low (-23 to -45 bar for green panic, and -14 to -18 bar for siratro), the stomata were closed and no growth occurred. In the burned plants of both species, however, �s on day 12 was -9 to -11 bars, the stomata were open and growth occurred, presumably because the complete defoliation allowed the plants to make use of a limited store of soil water at higher water potential. In green panic �s fell rapidly, and growth stopped after day 19, but �s and g, in siratro were still high on day 28. Burning of droughted native pastures is a common management practice in the semi-arid tropics of Australia. The data may explain how the pastures are able to make the new growth that frequently occurs.


2004 ◽  
Vol 16 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Carlos Henrique Britto de Assis Prado ◽  
Zhang Wenhui ◽  
Manuel Humberto Cardoza Rojas ◽  
Gustavo Maia Souza

Predawn leaf water potential (psipd) and morning values of leaf gas exchange, as net photosynthesis (A), stomatal conductance (gs), transpiration (E), and morning leaf water potential (psimn) were determined seasonally in 22 woody cerrado species growing under natural conditions. Despite the lower mean values of psipd in the dry season (-0.35 ± 0.23 MPa) compared to the wet season (-0.08 ± 0.03 MPa), the lowest psipd in the dry season (-0.90 ± 0.00 MPa) still showed a good nocturnal leaf water status recovery for all species studied through out the year. Mean gs values dropped 78 % in the dry season, when the vapor pressure of the air was 80% greater than in the wet season. This reduction in gs led to an average reduction of 33% in both A and E, enabling the maintainance of water use efficiency (WUE) during the dry season. Network connectance analysis detected a change in the relationship between leaf gas exchange and psimn in the dry season, mainly between gs-E and E-WUE. A slight global connectance value increase (7.25 %) suggested there was no severe water stress during the dry season. Multivariate analysis showed no link between seasonal response and species deciduousness, suggesting similar behavior in remaining leaves for most of the studied species concerning leaf gas exchange and psimn under natural drought.


2014 ◽  
Vol 20 ◽  
pp. 115-121
Author(s):  
K. Poudyal

Quercus semecarpifolia is a high altitude oak and dominant species of central Himalayan vegetation.In the central Himalaya, plants are subjected to a prolonged dry period, thus developing moisturestress. Soil water potential at 15 cm and 30 cm depth, predawn and midday leaf water potential andtheir relationship with stomatal conductance and phenological behaviour was studied at PhulchowkiHill, Kathmandu to evaluate the drought adaptation strategy of Q. semecarpifolia in a pure stand at2130 m elevation. The natural ecosystem of Himalayan region has a characteristic climatic pattern ofconcentrated rainfall and a prolonged dry season which have a strong effect on the adaptability of thisspecies. It maintained a high predawn leaf water potential (ΨL pd) and stomatal conductance (gw)despite low soil water Ψ and ΨL pd . Lowest Ψs and ΨL pd were observed in March 1999, when therewas almost no rain for five months. Mean ΨL pd and ΨL md were (–1.79 and –2.29 MPa, respectively).Patterns of ΨL pd and ΨL md correlated significantly with soil Ψ, and phenology as ΨL pd oftenincreased during leafing but not with gw.DOI: http://dx.doi.org/10.3126/eco.v20i0.11473ECOPRINT An International Journal of EcologyVol. 20, 2013page: 115-121


Sign in / Sign up

Export Citation Format

Share Document