root hydraulic conductance
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 5)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiangfeng Tan ◽  
Mengmeng Liu ◽  
Ning Du ◽  
Janusz J. Zwiazek

Abstract Background Root hypoxia has detrimental effects on physiological processes and growth in most plants. The effects of hypoxia can be partly alleviated by ethylene. However, the tolerance mechanisms contributing to the ethylene-mediated hypoxia tolerance in plants remain poorly understood. Results In this study, we examined the effects of root hypoxia and exogenous ethylene treatments on leaf gas exchange, root hydraulic conductance, and the expression levels of several aquaporins of the plasma membrane intrinsic protein group (PIP) in trembling aspen (Populus tremuloides) seedlings. Ethylene enhanced net photosynthetic rates, transpiration rates, and root hydraulic conductance in hypoxic plants. Of the two subgroups of PIPs (PIP1 and PIP2), the protein abundance of PIP2s and the transcript abundance of PIP2;4 and PIP2;5 were higher in ethylene-treated trembling aspen roots compared with non-treated roots under hypoxia. The increases in the expression levels of these aquaporins could potentially facilitate root water transport. The enhanced root water transport by ethylene was likely responsible for the increase in leaf gas exchange of the hypoxic plants. Conclusions Exogenous ethylene enhanced root water transport and the expression levels of PIP2;4 and PIP2;5 in hypoxic roots of trembling aspen. The results suggest that ethylene facilitates the aquaporin-mediated water transport in plants exposed to root hypoxia.


2020 ◽  
Vol 179 ◽  
pp. 104233
Author(s):  
Marina Alves Gavassi ◽  
Ian Charles Dodd ◽  
Jaime Puértolas ◽  
Giselle Schwab Silva ◽  
Rogério Falleiros Carvalho ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 450 ◽  
Author(s):  
Hamideh Fatemi ◽  
Chokri Zaghdoud ◽  
Pedro A. Nortes ◽  
Micaela Carvajal ◽  
Maria del Carmen Martínez-Ballesta

Zinc (Zn) is considered an essential element with beneficial effects on plant cells; however, as a heavy metal, it may induce adverse effects on plants if its concentration exceeds a threshold. In this work, the effects of short-term and prolonged application of low (25 µM) and high (500 µM) Zn concentrations on pak choi (Brassica rapa L.) plants were evaluated. For this, two experiments were conducted. In the first, the effects of short-term (15 h) and partial foliar application were evaluated, and in the second a long-term (15 day) foliar application was applied. The results indicate that at short-term, Zn may induce a rapid hydraulic signal from the sprayed leaves to the roots, leading to changes in root hydraulic conductance but without effects on the whole-leaf gas exchange parameters. Root accumulation of Zn may prevent leaf damage. The role of different root and leaf aquaporin isoforms in the mediation of this signal is discussed, since significant variations in PIP1 and PIP2 gene expression were observed. In the second experiment, low Zn concentration had a beneficial effect on plant growth and specific aquaporin isoforms were differentially regulated at the transcriptional level in the roots. By contrast, the high Zn concentration had a detrimental effect on growth, with reductions in the root hydraulic conductance, leaf photosynthesis rate and Ca2+ uptake in the roots. The abundance of the PIP1 isoforms was significantly increased during this response. Therefore, a 25 µM Zn dose resulted in a positive effect in pak choi growth through an increased root hydraulic conductance.


HortScience ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 192-196 ◽  
Author(s):  
Lesley A. Judd ◽  
Brian E. Jackson ◽  
William C. Fonteno ◽  
Jean-Christophe Domec

Root hydraulic conductance and conductivity are physiological traits describing the ease with which water can move through the belowground vascular system of a plant, and are used as indicators of plant performance and adaptability to a given environment. The ability to measure hydraulic conductance of container-grown herbaceous and semiwoody plants with soft conductive tissue was tested using a hydraulic conductance flow meter (HCFM). Although the HCFM is a hydraulic apparatus that has been used on woody plants to measure hydraulic conductance of intact roots, it has never been reportedly used on container-grown horticultural plants. Two herbaceous species, Chrysanthemum L. and Solenstemon scutellarioides Thonn., were grown in containers and hydraulic parameters were measured, including root conductance and root conductivity, as well as physical traits such as stem diameter and dry root mass. The HCFM was easily connected to intact roots even on herbaceous stems and was used to determine hydraulic conductance and conductivity directly on container-grown plants with minimal disturbance on the root system. Chrysanthemums, Buddleja davidii Franch., and Hibiscus moscheutos L. were grown in three different substrates, and both root mass and root hydraulic parameters were determined. Chrysanthemums showed a positive response with increasing root hydraulic conductance with increasing root mass. The substrates used in these studies only had an effect on root biomass of chrysanthemums, but substrates had no differential effect on root hydraulic conductivity.


Sign in / Sign up

Export Citation Format

Share Document