scholarly journals Changes in types of muscle fibers induced by transcutaneous electrical stimulation of the diaphragm of rats

2008 ◽  
Vol 41 (9) ◽  
pp. 809-811 ◽  
Author(s):  
D. Costa ◽  
K.M. Cancelliero ◽  
G.E.R. Campos ◽  
T.F. Salvini ◽  
C.A. da Silva
2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


2019 ◽  
Vol 45 (3) ◽  
pp. 262-270 ◽  
Author(s):  
A. V. Minyaeva ◽  
S. A. Moiseev ◽  
A. M. Pukhov ◽  
N. A. Shcherbakova ◽  
Yu. P. Gerasimenko ◽  
...  

2009 ◽  
Vol 89 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Alex R Ward

Transcutaneous electrical stimulation using kilohertz-frequency alternating current (AC) became popular in the 1950s with the introduction of “interferential currents,” promoted as a means of producing depth-efficient stimulation of nerve and muscle. Later, “Russian current” was adopted as a means of muscle strengthening. This article reviews some clinically relevant, laboratory-based studies that offer an insight into the mechanism of action of kilohertz-frequency AC. It provides some answers to the question: “What are the optimal stimulus parameters for eliciting forceful, yet comfortable, electrically induced muscle contractions?” It is concluded that the stimulation parameters commonly used clinically (Russian and interferential currents) are suboptimal for achieving their stated goals and that greater benefit would be obtained using short-duration (2–4 millisecond), rectangular bursts of kilohertz-frequency AC with a frequency chosen to maximize the desired outcome.


1996 ◽  
Vol 2 (5) ◽  
pp. 452-459 ◽  
Author(s):  
Giuseppe Vallar ◽  
Maria Luisa Rusconi ◽  
Bruno Bernardini

AbstractThe effects of transcutaneous electrical stimulation on deficits of tactile perception contralateral to a hemispheric lesion were investigated in 10 right brain-damaged patients and in four left brain-damaged patients. The somatosensory deficit recovered, transiently and in part, after stimulation of the side of the neck contralateral to the side of the lesion, in all 10 patients with lesions in the right hemisphere, both with (six cases) and without (four cases) left visuo-spatial hemineglect, and in one left brain-damaged patient with right hemineglect. In three left brain-damaged patients without hemineglect, the treatment had no detectable effects. In one right brain-damaged patient, the stimulation of the side of the neck ipsilateral to the side of the lesion temporarily worsened the somatosensory deficit. These effects of transcutaneous electrical stimulation are similar to those of vestibular stimulation. The suggestion is made that these treatments modulate, through afferent sensory pathways, higher-order spatial representations of the body, which are pathologically distorted toward the side of the lesion. The modulatory effect is direction-specific: the defective internal representation of the contralesional side may be either partly restored, improving the disorder of tactile perception, or further impoverished, worsening the deficit. The possible neural basis of this modulation is discussed. (JINS, 1996, 2, 452–459.)


Sign in / Sign up

Export Citation Format

Share Document