scholarly journals Recent advances in the use of glass ionomers: bone substitutes

1999 ◽  
Vol 13 (2) ◽  
pp. 203-207
Author(s):  
Luiz Antonio SALATA ◽  
Cássio Edvard SVERZUT ◽  
Samuel Porfírio XAVIER

The purpose of this study is to update the reader upon the latest scientific trends concerning the use of glass ionomer cements (GICs). These materials which have been found of large clinical application in dentistry worldwide, have recently been successfully tested as bone substitutes in minor surgical procedures. The new perspectives of the use of glass ionomer as an osteoconductive material is analysed in the light of its biological properties as a restorative material.

2006 ◽  
Vol 14 (spe) ◽  
pp. 3-9 ◽  
Author(s):  
Carel Leon Davidson

This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.


1988 ◽  
Vol 2 (1) ◽  
pp. 134-141 ◽  
Author(s):  
D.C. Smith

The manifold uses of dental cements-as (a) luting agents, (b) cavity linings and bases, and (c) restorations for teeth—make them perhaps the most important materials in clinical dentistry. The research of the last 10 years has resulted in four main types, classified by matrix-forming species: (1) phosphate, (2) phenolate, (3) polycarboxylate, and (4) polymethacrylate. The zinc phosphate cements continue to be widely used for luting in an essentially unchanged form. Acidity and oral dissolution remain as problems. The zinc-oxide eugenol cements and their modifications are useful as linings and temporary materials but are susceptible to hydrolytic breakdown. Vanillate cements may be an improvement. Calcium hydroxide-salicylate cements are widely used as cavity linings, especially on exposures, and show improved resistance to acid dissolution. Polycarboxylate cements as both zinc polycarboxylate and glass-ionomer cements show adhesion potential, good physical properties, fluoride release, and, generally, good biological properties. Glass-ionomer cements when correctly manipulated show minimal oral dissolution. Polymethacrylate cements have been used principally for bonding etched cast metal restorations to etched enamel. Recently, adhesive crown-and-bridge cements have been developed. There are no well-established correlations between laboratory measurements of apparently relevant properties and clinical performance. More clinically-based research is needed to facilitate the development of new cements.


Author(s):  
CHARANTEJA VEMAGIRI ◽  
Uloopi KS ◽  
Vinay Chandrappa ◽  
Anusha Ch

Background: A successful restorative material forms a better adhesion, resist the microleakage and releases fluoride. However, existing glass ionomer cements cannot be used as a posterior restorative material in stress bearing areas. A new ionomer called Zirconomer, zirconia reinforced glass ionomer claims to exhibit high physical and biological properties. Aim: To assess and compare the microleakage, compressive strength, flexural strength and fluoride release from zirconomer with ketac silver. Materials & Methods: On twenty caries free premolar teeth (10 per each group), a class v cavity was restored with zirconomer and ketac silver. The microleakage was assessed using dye penetration test and stereomicroscope. The compressive and flexural strengths of these materials were measured using Instron Universal testing machine. The amount of fluoride released from the modified ionomers at pH 5 and pH 7 was estimated using Orion fluoride specific electrode. The obtained data was then subjected to statistical analysis. Results: Data was analysed using paired t-test for intergroup comparisons and unpaired t-test for intragroup comparisons. The overall microleakage (0.5±0.48) of zirconomer was significantly less (p=0.000) compared to ketac silver (1.9±0.83). Zirconomer demonstrated a significant higher compressive strength (330.25±60.14), flexural strength (33.058±2.36) than ketac silver (p= 0.000). Zirconomer demonstrated high fluoride release from day 1 to day 7 at both pH 5 and pH 7. Conclusion: Zirconomer demonstrated better physical and biological properties compared with ketac silver.


Author(s):  
Parisa Golkar ◽  
Ladan Ranjbar Omrani ◽  
Shide Zohourinia ◽  
Elham Ahmadi ◽  
Faeze Asadian

Objectives: In this study we assessed the cytotoxic effect of nanohydroxyapatite (NHA) incorporated into resin modified and conventional glass ionomer cements (RMGICs and CGICs) on L929 murine fibroblasts. Materials and Methods: In this in vitro study, 0wt%, 1wt%, 2wt%, 5wt%, 7wt% and 10wt% concentrations of NHA were added to Fuji II LC RMGIC and Fuji IX CGIC powders. Eighteen samples (5×3mm) were fabricated from each type of glass ionomer, in six experimental groups (n=3): CG0, CG1, CG2, CG5, CG7, CG10, RMG0, RMG1, RMG2, RMG5, RMG7, and RMG10. Samples were incubated for 72h. The overlaying solution was removed and added to L929 fibroblasts. The methyl thiazolyl tetrazolium bromide (MTT) assay was performed at 24, 48 and 72h. The wavelength was read by a spectrophotometer. Data were analyzed by ANOVA and Tukey’s test. Results: There was no significant difference in cytotoxicity of the two types of glass ionomers, with and without NHA, except for CG0 and RMG0 groups after 72h. RMG0 group was significantly more cytotoxic than the CG0 group (P<0.05). In CG groups during the first 24h, the cytotoxicity of CG5 and CG7 groups was significantly higher than that of CG1; while, there was no significant difference between the RMG groups. Cytotoxicity significantly decreased in all groups after 24h (P<0.05). Conclusion: Incorporation of NHA into Fuji II LC RMGIC and Fuji IX CGIC did not affect their biocompatibility and therefore its addition to these materials can provide favorable biological properties, especially considering its beneficial effects on the other properties of GICs.


2016 ◽  
Vol 17 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Mohammed Almuhaiza

ABSTRACT Glass-ionomer cements (GICs) are mainstream restorative materials that are bioactive and have a wide range of uses, such as lining, bonding, sealing, luting or restoring a tooth. Although the major characteristics of GICs for the wider applications in dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They have undergone remarkable changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed to improve their physical properties and diversified their use as a restorative material of great clinical applicability. The lightcured polymer reinforced materials appear to have substantial benefits, while retaining the advantages of fluoride release and adhesion. Further research should be directed towards improving the properties, such as strength and esthetics without altering its inherent qualities, such as adhesion and fluoride releasing capabilities. How to cite this article Almuhaiza M. Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal. J Contemp Dent Pract 2016;17(4):331-336.


2017 ◽  
Vol 5 (30) ◽  
pp. 6065-6080 ◽  
Author(s):  
Vuk Uskoković ◽  
Shreya Ghosh ◽  
Victoria M. Wu

Bone grafting is one of the commonest surgical procedures, yet all bone substitutes developed so far suffer from specific weaknesses and the search for a bone graft material with ideal physical and biological properties is still ongoing.


2011 ◽  
Vol 36 (1) ◽  
pp. 80-85 ◽  
Author(s):  
P. Neelakantan ◽  
S. John ◽  
S. Anand ◽  
N. Sureshbabu ◽  
C. Subbarao

Clinical Relevance The antibacterial and cariostatic properties of glass-ionomer cements are associated with the amount of fluoride released. Therefore, fluoride release from a restorative material for extended periods of time is considered favorable.


Sign in / Sign up

Export Citation Format

Share Document