scholarly journals Production of streptomycete inoculum in sterilized rice

2007 ◽  
Vol 64 (6) ◽  
pp. 641-644 ◽  
Author(s):  
Ana Cristina Fermino Soares ◽  
Carla da Silva Sousa ◽  
Marlon da Silva Garrido ◽  
Jane Oliveira Perez

Actinomycetes are important plant disease control and growth promotion agents, which makes it necessary to develop technology to produce large quantities of inoculum for green-house and field work. The present study had the objective of evaluating the growth of several isolates of Streptomyces in sterile rice for inoculum production. The sterile rice was inoculated with isolates of S. thermotolerans, S. griseus subsp. griseus, Streptomyces sp. N0035, S. purpurascens, and Streptomyces sp., and incubated at 28 ± 2ºC. Five days after its inoculation, mycelial growth and sporulation was observed for all Streptomyces isolates on the rice grains. Twelve days after incubation, the colonized rice was transferred to envelopes of dark brown paper and let to dry in an incubator at 30ºC for three days. After drying, 1g of colonized rice was added to 200 mL of sterile distilled water and the number of spores was counted under a microscope with a Newbauer counting chamber. Spore production varied from 0.14 × 10(9) to 1.47 × 10(9) spores per gram of rice and differed among the Streptomyces species. Sterile rice can be an alternative substrate for low cost mass production of Streptomyces inoculum.

Author(s):  
Zerihun A Demissie ◽  
Kelly A. Robinson ◽  
Michele C Loewen

Clonostachys rosea strains ACM941 and 88-710 are beneficial microbes recognized for their plant disease control and growth promotion properties, respectively, when applied to economically important crops. In addition to their geographical and functional overlap, the two strains also share a high degree of genetic similarity. In an effort to identify the subtleties that underlie their strain specific applications, their genomic sequences are reported here. The genome size of ACM941 was estimated to be 56.1 Mb, encoding 17,585 putative genes, while strain 88-710 was estimated to have a 54.6 Mb genome size, containing 17,188 predicted genes. Overall, ACM941 and 88-710 share > 96 % of their encoded genomes, such that their strain specific characteristics are likely encoded in the remaining variable 4 % and/or in differentially regulated shared genes. These genomic sequences form a foundation for future studies aimed at identifying the genomic and metabolic machinery driving their respective beneficial properties.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1496
Author(s):  
Sohyun Bae ◽  
Jae Woo Han ◽  
Quang Le Dang ◽  
Hun Kim ◽  
Gyung Ja Choi

Plants contain a number of bioactive compounds that exhibit antimicrobial activity, which can be recognized as an important source of agrochemicals for plant disease control. In searching for natural alternatives to synthetic fungicides, we found that a methanol extract of the plant species Platycladus orientalis suppressed the disease development of rice blast caused by Magnaporthe oryzae. Through a series of chromatography procedures in combination with activity-guided fractionation, we isolated and identified a total of eleven compounds including four labdane-type diterpenes (1–4), six isopimarane-type diterpenes (5–10), and one sesquiterpene (11). Of the identified compounds, the MIC values of compounds 1, 2, 5 & 6 mixture, 9, and 11 ranged from 100 to 200 μg/mL against M. oryzae, whereas the other compounds were over 200 μg/mL. When rice plants were treated with the antifungal compounds, compounds 1, 2, and 9 effectively suppressed the development of rice blast at all concentrations tested by over 75% compared to the non-treatment control. In addition, a mixture of compounds 5 & 6 that constituted 66% of the P. orientalis ethyl acetate fraction also exhibited a moderate disease control efficacy. Together, our data suggest that the methanol extract of P. orientalis including terpenoid compounds has potential as a crop protection agent.


2018 ◽  
Vol 8 ◽  
Author(s):  
Yufeng Chen ◽  
Dengbo Zhou ◽  
Dengfeng Qi ◽  
Zhufen Gao ◽  
Jianghui Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document