scholarly journals Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1496
Author(s):  
Sohyun Bae ◽  
Jae Woo Han ◽  
Quang Le Dang ◽  
Hun Kim ◽  
Gyung Ja Choi

Plants contain a number of bioactive compounds that exhibit antimicrobial activity, which can be recognized as an important source of agrochemicals for plant disease control. In searching for natural alternatives to synthetic fungicides, we found that a methanol extract of the plant species Platycladus orientalis suppressed the disease development of rice blast caused by Magnaporthe oryzae. Through a series of chromatography procedures in combination with activity-guided fractionation, we isolated and identified a total of eleven compounds including four labdane-type diterpenes (1–4), six isopimarane-type diterpenes (5–10), and one sesquiterpene (11). Of the identified compounds, the MIC values of compounds 1, 2, 5 & 6 mixture, 9, and 11 ranged from 100 to 200 μg/mL against M. oryzae, whereas the other compounds were over 200 μg/mL. When rice plants were treated with the antifungal compounds, compounds 1, 2, and 9 effectively suppressed the development of rice blast at all concentrations tested by over 75% compared to the non-treatment control. In addition, a mixture of compounds 5 & 6 that constituted 66% of the P. orientalis ethyl acetate fraction also exhibited a moderate disease control efficacy. Together, our data suggest that the methanol extract of P. orientalis including terpenoid compounds has potential as a crop protection agent.

2021 ◽  
Author(s):  
Kasem Soytong ◽  
Somdej Kahonokmedhakul ◽  
Jiaojiao Song ◽  
Rujira Tongon

Chaetomium species for plant disease control are reported to be antagonize many plant pathogens. It is a new broad spectrum biological fungicide from Chaetomium species which firstly discovered and patented No. 6266, International Code: AO 1 N 25/12, and registered as Ketomium® mycofungicide for plant disease control in Thailand, Laos, Vietnam, Cambodia and China. Chaetoimum biofungicide and biostimulants are applied to implement integrated plant disease control. It showed protective and curative effects in controlling plant disease and promoting plant growth. It has been successfully applied to the infested soils with integrated cultural control for the long-term protection against rice blast (Magnaporte oryzae), durian and black Pepper rot (Piper nigram L.) (Phytophthora palmivora), citrus rot (Phytophthora parasitica) and strawberry rot (Fragaria spp.) caused by Phytophthora cactorum, wilt of tomato (Fusarium oxysporum f. sp. lycopersici), basal rot of corn (Sclerotium rolfsii) and anthracnose (Colletotrichum spp.) etc. Further research is reported on the other bioactive compounds from active strains of Chaetomium spp. We have discovered various new compounds from Ch. globosum, Ch. cupreum, Ch. elatum, Ch. cochliodes, Ch. brasiliense, Ch. lucknowense, Ch. longirostre and Ch. siamense. These new compounds are not only inhibiting human pathogens (anti-malaria, anti-tuberculosis, anti-cancer cell lines and anti-C. albicans etc) but also plant pathogens as well. These active natural products from different strains of Chaetomium spp. are further developed to be biodegradable nanoparticles from active metabolites as a new discovery of scientific investigation which used to induce plant immunity, namely microbial degradable nano-elicitors for inducing immunity through phytoalexin production in plants e.g. inducing tomato to produce alpha-tomaline against Fusarium wilt of tomato, capsidiol against chili anthracnose, sakuranitin and oryzalexin B against rice blast, scopletin and anthrocyaidin against Phytophthora or Pythium rot Durian and scoparone against Phytophthora or Pythium rot of citrus. Chaetomium biofungicide can be applied instead of toxic chemical fungicides to control plant diseases.


2005 ◽  
Vol 143 (1) ◽  
pp. 11-25 ◽  
Author(s):  
P. E. RUSSELL

Up until the 1940s chemical disease control relied upon inorganic chemical preparations, frequently prepared by the user. Key areas of use were horticulture and vegetable production with key targets being diseases that caused easily recognized damage. After this era and as the damaging effects of more crop diseases became obvious by the use of chemical control, the crop protection industry expanded rapidly and research to discover new active materials began in earnest. As new areas of chemistry were introduced, each one aiming to offer advantages over the previous ones, chemical families were born with research-based companies frequently adopting patent-busting strategies in order to capitalize on the developing fungicides market. Systemic fungicides offered new opportunities in disease control. The rise in Research and Development (R & D) and the increase in the number and quantity of chemicals being applied led to the introduction of regulation in the 1950s, initially on a voluntary basis, but now strictly controlled by legal obligations. In the 1960s, the market switched from horticulture and vegetables to one in which the main agricultural crops dominated. The cereal market, initially based on barley, moved to the current dominant market of wheat. The costs of R & D have risen dramatically in recent years and have become dominated not by the discovery process per se but by the provision of all the extra data needed to obtain registration. These rising costs happened at a time when markets showed little growth and are currently showing some decline. This has resulted in an industry that is continually striving to cut costs, normally by mergers and take-overs. As a consequence, many plant disease problems are not now being targeted by the industry and special measures have been introduced to ensure adequate disease control is available for these minor markets. Plant disease control will remain a necessity and fungicides will remain as a key factor in such control, although it is predicted that integrated control using chemicals, biological controls and biotechnology approaches will begin to dominate.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


Author(s):  
Emilio Montesinos ◽  
Esther Badosa ◽  
Jordi Cabrefiga ◽  
Marta Planas ◽  
Lidia Feliu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document