scholarly journals Genetic polymorphisms of Interleukin-18 are not associated with allograft function in kidney transplant recipients

2014 ◽  
Vol 37 (2) ◽  
pp. 343-349 ◽  
Author(s):  
Wenna Gleyce Araújo do Nascimento ◽  
Daiani Alves Cilião ◽  
Julieta Genre ◽  
Dikson Dibe Gondim ◽  
Renata Gomes Alves ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas Duflot ◽  
Charlotte Laurent ◽  
Anne Soudey ◽  
Xavier Fonrose ◽  
Mouad Hamzaoui ◽  
...  

AbstractThis study addressed the hypothesis that epoxyeicosatrienoic acids (EETs) synthesized by CYP450 and catabolized by soluble epoxide hydrolase (sEH) are involved in the maintenance of renal allograft function, either directly or through modulation of cardiovascular function. The impact of single nucleotide polymorphisms (SNPs) in the sEH gene EPHX2 and CYP450 on renal and vascular function, plasma levels of EETs and peripheral blood monuclear cell sEH activity was assessed in 79 kidney transplant recipients explored at least one year after transplantation. Additional experiments in a mouse model mimicking the ischemia–reperfusion (I/R) injury suffered by the transplanted kidney evaluated the cardiovascular and renal effects of the sEH inhibitor t-AUCB administered in drinking water (10 mg/l) during 28 days after surgery. There was a long-term protective effect of the sEH SNP rs6558004, which increased EET plasma levels, on renal allograft function and a deleterious effect of K55R, which increased sEH activity. Surprisingly, the loss-of-function CYP2C9*3 was associated with a better renal function without affecting EET levels. R287Q SNP, which decreased sEH activity, was protective against vascular dysfunction while CYP2C8*3 and 2C9*2 loss-of-function SNP, altered endothelial function by reducing flow-induced EET release. In I/R mice, sEH inhibition reduced kidney lesions, prevented cardiac fibrosis and dysfunction as well as preserved endothelial function. The preservation of EET bioavailability may prevent allograft dysfunction and improve cardiovascular disease in kidney transplant recipients. Inhibition of sEH appears thus as a novel therapeutic option but its impact on other epoxyfatty acids should be carefully evaluated.


2018 ◽  
Vol 19 (12) ◽  
pp. 3945 ◽  
Author(s):  
Monika Lindemann ◽  
Johannes Korth ◽  
Ming Sun ◽  
Shilei Xu ◽  
Christoph Struve ◽  
...  

In kidney transplant recipients, the cytomegalovirus (CMV) is frequently causing infection/reactivation and can trigger allograft rejection. To assess the risk of reactivation, the cellular immune response against CMV is increasingly assessed by cellular in vitro methods, such as the interferon (IFN)-γ ELISpot. In the current study we compared the IFN-γ ELISpot with our newly established CMV-specific ELISpot assays determining IL-17A, IL-21, IL-22, granzyme B, and perforin and correlated the results with flow cytometric data and clinical parameters. In 77 kidney transplant recipients, the highest frequency was observed for CMV pp65-specific cells secreting IFN-γ, followed by cells secreting IL-21 (62.9 and 23.2 Δ spot forming cells/105 cells). We observed a positive correlation between the percentage of CMV-specific CD3+ CD4+ CD154+ cells and results of the CMV-specific IL-21 ELISpot (p = 0.002). Results of the CMV pp65-specific IL-21 ELISpot correlated negatively with kidney function (estimated glomerular filtration rate, p = 0.006) and were significantly higher in women (p = 0.005). IL-21, a cytokine involved in aging that is secreted by activated CD4+ T cells, may also impact on allograft function. Thus, the CMV-specific IL-21 ELISpot could become a new tool to assess if CMV seropositivity represents a hazard for the graft.


2014 ◽  
Vol 30 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Mohammad Hossein Karimi ◽  
Sara Hejr ◽  
Bita Geramizadeh ◽  
Ramin Yaghobi ◽  
Mohammad Mehdi Sagheb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document