scholarly journals Bioelectrical impedance analysis and anthropometry for the determination of body composition in rats: effects of high-fat and high-sucrose diets

2012 ◽  
Vol 25 (3) ◽  
pp. 331-339 ◽  
Author(s):  
Larissa Rodrigues Neto Angéloco ◽  
Rafael Deminice ◽  
Izabel de Arruda Leme ◽  
Renata Cristina Lataro ◽  
Alceu Afonso Jordão

OBJECTIVE: The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. METHODS: Twenty-four male Wistar rats were fed a standard (AIN-93), high-fat (50% fat) or high-sucrose (59% of sucrose) diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. RESULTS: Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. CONCLUSION: Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.

1993 ◽  
Vol 74 (5) ◽  
pp. 2092-2098 ◽  
Author(s):  
J. Ilagan ◽  
V. Bhutani ◽  
P. Archer ◽  
P. K. Lin ◽  
K. L. Jen

The effects of body weight cycling (WC) in rats on body composition (BC) and feeding efficiency were studied. The usefulness of estimating BC by bioelectrical impedance analysis (BIA) was also examined. Female Sprague-Dawley rats were divided into high-fat ad libitum feeding, either noncycling or cycling, or restricted feeding (75% of control feed) cycling groups. Control rats were fed a regular laboratory ad libitum diet and did not cycle. All rats were killed at the end of week 61. A BIA unit was used at each stage of WC to obtain resistance and reactance readings. Final BC was determined by chemical analysis. On the basis of the final chemical analysis and BIA measurements, an equation was established and applied to estimate BC at each stage of WC: fat-free mass (g) = 0.38 x body wt (g) + 13.8 x [length (cm)2/resistance] + 70.9 (r = 0.95, P < 0.001). High-fat ad libitum feeding induced rapid body weight and fat gains as well as an elevated feeding efficiency and an internal fat-to-subcutaneous fat ratio, regardless of whether the rats cycled. This change in fat mass was clearly detected by the BIA. Although rats fed restricted diets had similar body weights as did control rats, they had a significantly higher internal fat-to-subcutaneous fat ratio. Thus, not only the amount of food but also the composition of the diet is important for proper weight management. The BIA method is capable of detecting the body fat mass change during WC.


2021 ◽  
Vol 9 ◽  
Author(s):  
David J. Farbo ◽  
Deborah J. Rhea

Background: Body mass index (BMI) is frequently labeled as “flawed” in assessing obesity since it cannot differentiate between muscle and fat leading to misclassifications of healthy individuals. Bioelectrical impedance analysis (BIA) may be a more accurate indicator of obesity since it can distinguish the difference between muscle and fat in children. This pilot study investigated discrepancies between BMI and BIA body composition classifications in children with high levels of physical activity.Methods: Participants were selected from three elementary schools (N = 380, K = 76, 1st = 64, 2nd = 62, 3rd = 61, 4th = 83, and 5th = 34) receiving 60 min of outdoor, unstructured play daily. BIA scales were used to collect each child's body fat percentage and BMI score, then those numbers were categorized by BIA and BMI normative values as either underweight, healthy, overweight, or obese.Results: Overall, 26% of the students were classified differently when using the normative classifications for BMI and BIA, with the largest discrepancy found in the overweight category at 38%. Similar inconsistencies were found when students were divided as younger (42%) vs older students (36%), and males (40%) vs. females (35%).Conclusions: This pilot study demonstrated that there is a significant difference in how BMI and BIA discriminate between the different body composition categories. BIA consistently shows to be a more accurate tool in assessing obesity rates in children since it directly measures body fat.


2019 ◽  
Vol 7 (1) ◽  
pp. 2-5 ◽  
Author(s):  
ERFBM Azevedo ◽  
KC Alonso ◽  
A Cliquet

Abstract Purpose: To assess body composition and obesity in individuals with spinal cord injury (SCI) who practice and do not practice physical activity using body mass index (BMI) and bioelectrical impedance analysis (BIA). Methods: 39 patients with SCI went through BIA evaluation and BMI was assessed. Patients were divided into four groups according to injury level (paraplegia or tetraplegia) and physical activity achievement (active or inactive). Results: 22 individuals with paraplegia (7 active and 15 inactive) and 17 with tetraplegia (5 active and 12 inactive) were evaluated. BMI, fat percentage, fat mass, lean tissue mass, total body water (TBW), and TBW percentage were assessed in groups. Tetraplegic inactive groups showed higher fat percentage featuring obesity. For paraplegic active group mean fat percentage was 19.61% (±9.27) and mean fat mass was 16.66 kg (±9.71) and for paraplegic inactive group fat percentage was 23.27% (±5.94) and fat mass 18.59 kg (±7.58). For tetraplegic groups in active group the fat percentage was 17.14% (±6.32) and fat mass was 11.22 kg (±5.16) and for inactive group mean fat percentage was 33.68% (±4.74) and fat mass was 25.59 kg (±2.91). When paraplegic and tetraplegic inactive groups were compared differences were observed in fat percentage (p = 0.0003) and fat mass (p = 0.0084). Also, when tetraplegic groups (activeXinactive) were compared differences in percentage (p = 0.0019) and fat mass (p = 0.034) were observed. Only for the paraplegic inactive group BMI result was higher than 25 kg/m2. Conclusion: BMI does not discriminate between obesity levels in individuals with SCI and physical activity can improve body composition and prevent obesity in SCI patients.


2021 ◽  
Vol 6 (4) ◽  
pp. S52
Author(s):  
D. BASNAYAKE ◽  
A. Nayanamali ◽  
H. Amarathunga ◽  
N. Erandika ◽  
J. Pathiraja ◽  
...  

1999 ◽  
Vol 19 (8) ◽  
pp. 1179-1188 ◽  
Author(s):  
Sufia Islam ◽  
Iqbal Kabir ◽  
Mohammad A. Wahed ◽  
Michael I. Goran ◽  
Dilip Mahalanabis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document