scholarly journals Monte Carlo simulation of grain growth

1999 ◽  
Vol 2 (3) ◽  
pp. 133-137 ◽  
Author(s):  
Paulo Blikstein ◽  
André Paulo Tschiptschin
2002 ◽  
Vol 31 (10) ◽  
pp. 965-971 ◽  
Author(s):  
Sung Il Park ◽  
Sang Soo Han ◽  
Hyoung Gyu Kim ◽  
Joong Keun Park ◽  
Hyuck Mo Lee

2006 ◽  
Vol 252 (11) ◽  
pp. 3997-4002 ◽  
Author(s):  
C. Ming Huang ◽  
C.L. Joanne ◽  
B.S.V. Patnaik ◽  
R Jayaganthan

2007 ◽  
Vol 558-559 ◽  
pp. 1237-1242
Author(s):  
M.C. Kim ◽  
D.A. Kim ◽  
Joong Kuen Park

The effect of carbon addition on the grain growth and ordering kinetics of FePt film has been experimentally studied by sputter-depositing a monolithic FePt-20at.%C film of 24 nm. Carbon addition of 20at.% to FePt thin film in a form of FePt (20 nm)/Cn (4 nm) (n = 1, 4) significantly reduced both the grain growth and ordering kinetics. Reducing the thickness of carbon layer, i.e. from n = 1 to n = 4, led to a much finer grain size distribution as well as to a finer grain size. The Monte Carlo simulation study indicated that the decrease of grain growth and ordering kinetics is primarily due to a continuous decrease of the mobility of order – disorder inter-phase with the progress of ordering reaction. This can eventually lead to a stable 2-phase grain structure inter-locked by low mobility inter-phases and is responsible for the formation of a fine grain size distribution in the FePt/Cn film with n = 4.


Author(s):  
P. Rajendra ◽  
K. R. Phaneesh ◽  
C. M. Ramesha ◽  
Madeva Nagaral ◽  
V Auradi

In metallurgy, the microstructure study is very important to evaluate the properties and performances of a material. The Monte Carlo method is applied in so many fields of Engineering Science and it is a very effective method to examine the topology of the computer-simulated structures and exactly resembles the static behavior of the atoms. The effective 2D simulation was performed to understand the grain growth kinetics, under the influence of second phase particles (impurities) is a base to control the microstructure. The matrix size and [Formula: see text]-states are optimized. The grain growth exponent was investigated in a polycrystalline material using the [Formula: see text]-state Potts model under the Monte Carlo simulation. The effect of particles present within the belly of grains and pinning on the grain boundaries are observed. The mean grain size under second phase particles obeys the square root dependency.


Sign in / Sign up

Export Citation Format

Share Document