scholarly journals Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes

2010 ◽  
Vol 13 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Özgür Eren ◽  
Khaled Marar
Author(s):  
Shan-Shan Huang ◽  
Harris Angelakopoulos ◽  
Kypros Pilakoutas ◽  
Ian Burgess

<p>Polypropylene fibres (PPF) are used in concrete principally to reduce plastic shrinkage cracking, but also to prevent explosive spalling of concrete exposed to fire. In the EU alone, an estimated 75,000 tonnes of virgin PPF are used each year. At the same time an estimated 63,000 tonnes of polymer fibres are recovered from end-of-life tyres, which are agglomerated and too contaminated with rubber to find any alternative use; currently these are mainly disposed of by incineration. The authors have initiated a study on the feasibility of reusing tyre polymer fibres in fresh concrete to mitigate fire-induced spalling. If successful, this will permit replacement of the virgin PPF currently used with a reused product of equal or superior performance. A preliminary experimental investigation is presented in this paper. High-strength concrete cubes/slabs have been tested under thermo-mechanical loading. This study has shown promising results; the specimens with the tyre polymer fibres have shown lower vulnerability to spalling than those of plain concrete.</p>


2002 ◽  
Vol 35 (3) ◽  
pp. 189-194 ◽  
Author(s):  
J. Branch ◽  
A. Rawling ◽  
D. J. Hannant ◽  
M. Mulheron

Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 2
Author(s):  
Sayahi ◽  
Emborg ◽  
Hedlund ◽  
Cwirzen

Plastic shrinkage cracking in concrete is mainly a physical process, in which chemical reactions between cement and water do not play a decisive role. It is commonly believed that rapid and excessive moisture loss, due to evaporation is the primary cause of the phenomenon. Once the concrete is cast, its solid particles start to settle due to gravity, causing an upward water-flow from the concrete interior and through its pore system to the surface, i.e., bleeding regime. When the amount of the evaporated water exceeds the amount of the water accumulated at the concrete surface, i.e., bleed water, concrete enters the so called drying regime, during which water menisci form inside the pores causing a build-up of a negative pore pressure, also known as capillary pressure. The progressive evaporation gradually decreases the radii of the menisci, which causes a further increase of the pore pressure and solid particles consolidation. Eventually, the skeleton of the concrete becomes stiff enough to resist the gravitational forces, which means that the vertical deformation of the concrete either completely stops or continues at a much lower rate. At this point, the capillary pressure is no longer able to further consolidate the concrete and move the pore water towards the surface. Instead, the developed tensile forces reduce the inter particle distances and the horizontal deformation continues. If the concrete member is restrained (e.g., due to reinforcement, variation in sectional depth, the friction of the form, etc.), the shrinkage can lead to tensile stresses accumulation. Once the tensile stresses exceed the early age tensile strength of the concrete, cracks start to form, preparing passageways for ingress of harmful materials into the concrete interior, which eventually may impair the durability and serviceability of the structure. This abstract reports the findings of a PhD research, carried out at Luleå University of Technology (LTU) to investigate the impact of parameters such as, admixtures, water-cement ratio (w/c), cement type, dosage of superplasticizer (SP), and steel fibers, on concrete’s cracking tendency while in plastic state. The results show that presence of accelerators, retarders, coarser cement particles, high w/c, and more SP increases the cracking risk, while stabilizers, air entraining agents (AEA), shrinkage reducing admixtures (SRA), and steel fibers notably decrease the cracking potential. Based on the findings of the above mentioned investigation a new model is proposed to estimate the severity of plastic shrinkage cracking, based on the initial setting time and the amount of the evaporated water from within the concrete bulk. The experimental results of the PhD research, alongside those reported by other researchers, were utilized to check the validity of the proposed model. According to the outcomes, the model could predict the cracking severity of the tested concretes with a good precision.


2020 ◽  
Vol 13 (3) ◽  
pp. 543-562
Author(s):  
A. M. LEITE ◽  
A. L. de CASTRO

Abstract One of the main purposes of the addition of fibers to the concrete is the control of the plastic shrinkage cracking in the fresh state and the increase of the post-crack resistance in the hardened state. The cementitious matrix is one of the factors that influences the performance of fiber reinforced concrete, interfering in the fluidity of the mixture and in the adhesion between fiber and matrix. In this context, the present paper evaluates the behavior of two concrete, one of conventional strength and another of high-strength, without fiber and with a content of 1%, by volume, of fiber, being used steel fiber and macro-polymeric fiber. For this, the mechanical properties of the concrete were evaluated in the hardened state by the tests of compressive strength, Barcelona, flexure of prisms and punching of plates. From the experimental results, statistically analyzed, there were significant changes in toughness and residual strength due to change in the cementitious matrix. Finally, an equivalence of performance between the fibers as to the toughness was observed, with the change of the cementitious matrix.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


Sign in / Sign up

Export Citation Format

Share Document