scholarly journals Plastic Shrinkage Cracking in Concrete

Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 2
Author(s):  
Sayahi ◽  
Emborg ◽  
Hedlund ◽  
Cwirzen

Plastic shrinkage cracking in concrete is mainly a physical process, in which chemical reactions between cement and water do not play a decisive role. It is commonly believed that rapid and excessive moisture loss, due to evaporation is the primary cause of the phenomenon. Once the concrete is cast, its solid particles start to settle due to gravity, causing an upward water-flow from the concrete interior and through its pore system to the surface, i.e., bleeding regime. When the amount of the evaporated water exceeds the amount of the water accumulated at the concrete surface, i.e., bleed water, concrete enters the so called drying regime, during which water menisci form inside the pores causing a build-up of a negative pore pressure, also known as capillary pressure. The progressive evaporation gradually decreases the radii of the menisci, which causes a further increase of the pore pressure and solid particles consolidation. Eventually, the skeleton of the concrete becomes stiff enough to resist the gravitational forces, which means that the vertical deformation of the concrete either completely stops or continues at a much lower rate. At this point, the capillary pressure is no longer able to further consolidate the concrete and move the pore water towards the surface. Instead, the developed tensile forces reduce the inter particle distances and the horizontal deformation continues. If the concrete member is restrained (e.g., due to reinforcement, variation in sectional depth, the friction of the form, etc.), the shrinkage can lead to tensile stresses accumulation. Once the tensile stresses exceed the early age tensile strength of the concrete, cracks start to form, preparing passageways for ingress of harmful materials into the concrete interior, which eventually may impair the durability and serviceability of the structure. This abstract reports the findings of a PhD research, carried out at Luleå University of Technology (LTU) to investigate the impact of parameters such as, admixtures, water-cement ratio (w/c), cement type, dosage of superplasticizer (SP), and steel fibers, on concrete’s cracking tendency while in plastic state. The results show that presence of accelerators, retarders, coarser cement particles, high w/c, and more SP increases the cracking risk, while stabilizers, air entraining agents (AEA), shrinkage reducing admixtures (SRA), and steel fibers notably decrease the cracking potential. Based on the findings of the above mentioned investigation a new model is proposed to estimate the severity of plastic shrinkage cracking, based on the initial setting time and the amount of the evaporated water from within the concrete bulk. The experimental results of the PhD research, alongside those reported by other researchers, were utilized to check the validity of the proposed model. According to the outcomes, the model could predict the cracking severity of the tested concretes with a good precision.

2011 ◽  
Vol 236-238 ◽  
pp. 2259-2263
Author(s):  
Xian Song Xie

Early shrinkage of concrete includes plastic shrinkage before the final setting, drying shrinkage during hardening process and autogenous shrinkage. Concrete drying shrinkage which is caused by evaporation is a major factor for the concrete volume change. By ring constrained test and free shrinkage CONCEN test, this paper studies the impact of polypropylene fibers on the shrinkage properties of concrete at the early age. The test shows that the polypropylene fibers can significantly reduce the early shrinkage of concrete, the best content of C30 concrete should be 0.9kg/m3.


2019 ◽  
Vol 60 (1) ◽  
pp. 67-88 ◽  
Author(s):  
Faez Sayahi ◽  
Mats Emborg ◽  
Hans Hedlund ◽  
Andrzej Cwirzen

Abstract This research investigates the effect of capillary pressure and the length of the hydration dormant period on the plastic shrinkage cracking tendency of SCC by studying specimens produced with different w/c ratios, cement types and SP dosages. A relationship between the capillary pressure rate and the length of the hydration dormant period is defined, which can explain the cracking severity of the concrete when the volumetric deformation is unknown. The results show, that the cracking tendency of SCC was the lowest in case of w/c ratio between 0.45 and 0.55, finer and more rapid hardening cement, and lower dosage of SP. The dormant period was prolonged by increasing the w/c ratio, using coarser cement, and higher SP dosage. It was concluded that the cracking tendency of concrete is a function of the capillary pressure buildup rate and the length of the dormant period.


2017 ◽  
Vol 2 ◽  
pp. 40-44 ◽  
Author(s):  
Sadegh Ghourchian ◽  
Mateusz Wyrzykowski ◽  
Pietro Lura

In this letter, a conventional method for mitigation of plastic shrinkage of fresh concrete based on comparing bleeding and evaporation rates (the former based on the commonly observed values of bleeding rate and the latter estimated by means of the commonly-used ACI nomograph) is critically assessed. It is shown that even if the initial bleeding rates are sufficiently high (i.e. higher than the evaporation rates), cracking may still occur if all the bleed water is lost by evaporation between the times of initial and final set, leading to the rise of capillary pressure. An alternative and more conservative method should be thus based on the total (accumulated) amount of bleed water compared to the total amount of evaporated water. The former should take into account the concrete’s properties and the geometry of the member, while the latter can be assumed based on the nomograph method.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2021 ◽  
Author(s):  
Mohamed Elkhawaga ◽  
Wael A. Elghaney ◽  
Rajarajan Naidu ◽  
Assef Hussen ◽  
Ramy Rafaat ◽  
...  

Abstract Optimizing the number of casing strings has a direct impact on cost of drilling a well. The objective of the case study presented in this paper is the demonstration of reducing cost through integration of data. This paper shows the impact of high-resolution 3D geomechanical modeling on well cost optimization for the GS327 Oil field. The field is located in the Sothern Gulf of Suez basin and has been developed by 20 wells The conventional casing design in the field included three sections. In this mature field, especially with the challenge of reducing production cost, it is imperative to look for opportunites to optimize cost in drilling new wells to sustain ptoduction. 3D geomechanics is crucial for such cases in order to optimize the cost per barrel at the same time help to drill new wells safely. An old wellbore stability study did not support the decision-maker to merge any hole sections. However, there was not geomechanics-related problems recorded during the drilling the drilling of different mud weights. In this study, a 3D geomechanical model was developed and the new mud weight calculations positively affected the casing design for two new wells. The cost optimization will be useful for any future wells to be drilled in this area. This study documents how a 3D geomechanical model helped in the successful delivery of objectives (guided by an understanding of pore pressure and rock properties) through revision of mud weight window calculations that helped in optimizing the casing design and eliminate the need for an intermediate casing. This study reveals that the new calculated pore pressure in the GS327 field is predominantly hydrostatic with a minor decline in the reservoir pressure. In addition, rock strength of the shale is moderately high and nearly homogeneous, which helped in achieving a new casing design for the last two drilled wells in the field.


Author(s):  
Shan-Shan Huang ◽  
Harris Angelakopoulos ◽  
Kypros Pilakoutas ◽  
Ian Burgess

<p>Polypropylene fibres (PPF) are used in concrete principally to reduce plastic shrinkage cracking, but also to prevent explosive spalling of concrete exposed to fire. In the EU alone, an estimated 75,000 tonnes of virgin PPF are used each year. At the same time an estimated 63,000 tonnes of polymer fibres are recovered from end-of-life tyres, which are agglomerated and too contaminated with rubber to find any alternative use; currently these are mainly disposed of by incineration. The authors have initiated a study on the feasibility of reusing tyre polymer fibres in fresh concrete to mitigate fire-induced spalling. If successful, this will permit replacement of the virgin PPF currently used with a reused product of equal or superior performance. A preliminary experimental investigation is presented in this paper. High-strength concrete cubes/slabs have been tested under thermo-mechanical loading. This study has shown promising results; the specimens with the tyre polymer fibres have shown lower vulnerability to spalling than those of plain concrete.</p>


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Sorin-Cristian Vlădescu ◽  
Carmine Putignano ◽  
Nigel Marx ◽  
Tomas Keppens ◽  
Tom Reddyhoff ◽  
...  

New apparatus is described to simulate a compliant seal interface, allowing the percolation of liquid to be viewed by a fluorescence microscope. A model, based on the boundary element (BE) methodology, is used to provide a theoretical explanation of the observed behavior. The impact of contact pressure, roughness, and surface energy on percolation rates are characterized. For hydrophilic surfaces, percolation will always occur provided a sufficient number of roughness length scales are considered. However, for hydrophobic surfaces, the inlet pressure must overcome the capillary pressure exerted at the minimum channel section before flow can occur.


Sign in / Sign up

Export Citation Format

Share Document