scholarly journals Effect of light curing unit on resin-modified glass-ionomer cements: a microhardness assessment

2009 ◽  
Vol 17 (3) ◽  
pp. 150-154 ◽  
Author(s):  
Daniela Francisca Gigo Cefaly ◽  
Liliam Lucia Carrara Paes de Mello ◽  
Linda Wang ◽  
José Roberto Pereira Lauris ◽  
Paulo Henrique Perlatti D'Alpino
2006 ◽  
Vol 20 (4) ◽  
pp. 342-346 ◽  
Author(s):  
Daniela Francisca Gigo Cefaly ◽  
Linda Wang ◽  
Liliam Lucia Carrara Paes de Mello ◽  
Janaína Lima dos Santos ◽  
Jean Rodrigo dos Santos ◽  
...  

The Light Emitting Diodes (LED) technology has been used to photoactivate composite resins and there is a great number of published studies in this area. However, there are no studies regarding resin-modified glass-ionomer cements (RMGIC), which also need photoactivation. Therefore, the aim of this study was to evaluate water sorption of two RMGIC photoactivated with LED and to compare this property to that obtained with a halogen light curing unit. A resin composite was used as control. Five specimens of 15.0 mm in diameter x 1.0 mm in height were prepared for each combination of material (Fuji II LC Improved, Vitremer, and Filtek Z250) and curing unit (Radii and Optilight Plus) and transferred to desiccators until a constant mass was obtained. Then the specimens were immersed into deionized water for 7 days, weighed and reconditioned to a constant mass in desiccators. Water sorption was calculated based on weight and volume of specimens. The data were analyzed by two-way ANOVA and Tukey test (p < 0.05). Specimens photocured with LED presented significantly more water sorption than those photocured with halogen light. The RMGIC absorbed statistically significant more water than the resin composite. The type of light curing unit affected water sorption characteristics of the RMGIC.


2012 ◽  
Vol 37 (4) ◽  
pp. 380-385 ◽  
Author(s):  
NC Lawson ◽  
D Cakir ◽  
P Beck ◽  
L Ramp ◽  
JO Burgess

SUMMARY Objective Recent studies confirmed that resin-modified glass ionomers (RMGIs) set on the basis of two competing mechanisms, an acid-base reaction and a light-activated resin polymerization. This study evaluated the effect of the setting mechanism on bond strength by measuring the shear bond strength of three RMGIs to dentin with and without light activation. Methods Sixty human molars were ground to midcoronal dentin and randomly divided into six even groups: 1) Ketac Nano (KN), 2) KN without light cure (woLC), 3) Fuji Filling LC (FF), 4) FF woLC, 5) Fuji II LC (FII), and 6) FII woLC. The dentin surfaces of the specimens were conditioned/primed according to the manufacturers' instructions. A 1.54-mm diameter plastic tube was filled with RMGI material and affixed to the dentin surface. Groups 1, 3, and 5 were light cured for 20 seconds, and groups 2, 4, and 6 were immediately placed in a damp dark box with no light curing at 37°C for 24 hours. Shear bond strength testing was performed in an Instron device at 1 mm/min. Data were analyzed with a one-way analysis of variance (ANOVA) and Tukey/Kramer test (α=0.05). Results Mean ± standard deviation shear bond strength values (MPa) are: 7.1 ± 4.2 (KN), 11.7 ± 3.9 (FF), 10.2 ± 3.2 (FF woLC), 12.5 ± 5.1 (FII), and 0.3 ± 0.4 (FII woLC). Two KN, all KN woLC, and seven FII woLC specimens debonded before testing. Tukey/Kramer analysis revealed no significant differences in bond strength between the three light-cured RMGIs. KN and FII showed significantly lower bond strength without light cure, but no significant difference was observed between FF and FF woLC. Conclusions The results of this study strongly suggest that light activation is necessary to obtain optimal bond strength between RMGI and dentin. FF may contain components that chemically activate resin polymerization. Clinically, KN and FII need to be light cured after placement of these RMGIs.


Author(s):  
Gabriela Olmos‐Olmos ◽  
Bernardo Teutle‐Coyotecatl ◽  
Cristian D. Román‐Mendez ◽  
Rosendo Carrasco‐Gutiérrez ◽  
Maykel González‐Torres ◽  
...  

2021 ◽  
Author(s):  
Zuleikha Malik ◽  
Danial Qasim Butt ◽  
Zainab Qasim Butt ◽  
Nawshad Muhammad ◽  
Muhammad Kaleem ◽  
...  

2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


2019 ◽  
Vol 73 (4) ◽  
pp. 239-248
Author(s):  
Violeta Petrovic ◽  
Jovana Stasic ◽  
Vojislav Komlenic ◽  
Tatjana Savic-Stankovic ◽  
Marina Latkovic ◽  
...  

The objective of this study was to measure temperature changes in the pulp chamber induced by polymerization of resin-based dental restoratives following a simulated procedure of direct pulp capping. Class I cavities with a microperforation at the pulp horn were prepared in extracted human molar teeth. The complete procedure of direct pulp capping and cavity restoration was performed with the root part of extracted teeth fixed in a water bath at 37 ?C. Mineral trioxide aggregate, bioactive dentin substitute or calcium-hydroxide paste were used as pulp capping materials. Cavities were restored with a light-cured or chemically-cured resin-modified glass ionomer, universal adhesive and a bulk-fill composite, cured with a high-intensity LED unit. Pulp capping materials caused a slight temperature decrease. Lower temperature increase was recorded during light-curing of the glass ionomer liner after direct capping with mineral trioxide aggregate and calcium-hydroxide than that recorded for the bioactive dentin substitute. Adhesive light-curing increased temperature in all groups with higher mean temperatures in groups with chemically-cured as compared to those for the light-cured glass ionomer liner. Direct pulp capping with mineral trioxide aggregate or calcium-hydroxide followed by the light-cured resin-modified glass ionomer liner and a bonded bulk-fill composite restoration induced temperature changes below the potentially adverse threshold of 42.5?C.


2004 ◽  
Vol 12 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Linda Wang ◽  
Marília Afonso Rabelo Buzalaf ◽  
Maria Teresa Atta

A dhesive systems associated to resin-modified glass ionomer cements are employed for the achievement of a higher bond strength to dentin. Despite this benefit, other properties should not be damaged. This study aimed at evaluating the short-time fluoride release of a resin-modified glass ionomer cement coated with two one-bottle adhesive systems in a pH cycling system. Four combinations were investigated: G1: Vitremer (V); G2: Vitremer + Primer (VP); G3: Vitremer + Single Bond (VSB) and G4: Vitremer + Prime & Bond 2.1 (VPB). SB is a fluoride-free and PB is a fluoride-containing system. After preparation of the Vitremer specimens, two coats of the selected adhesive system were carefully applied and light-cured. Specimens were immersed in demineralizing solution for 6 hours followed by immersion in remineralizing solution for 18 hours, totalizing the 15-day cycle. All groups released fluoride in a similar pattern, with a greater release in the beginning and decreasing with time. VP showed the greatest fluoride release, followed by V, with no statistical difference. VSB and VPB released less fluoride compared to V and VP, with statistical difference. Regardless the one-bottle adhesive system, application of coating decreased the fluoride release from the resin-modified glass ionomer cements. This suggests that this combination would reduce the beneficial effect of the restorative material to the walls around the restoration.


Sign in / Sign up

Export Citation Format

Share Document