scholarly journals Tracking upper limbs fatigue by means of electronic dynamometry

2015 ◽  
Vol 21 (2) ◽  
pp. 214-221
Author(s):  
Fernando Max Lima ◽  
Luciane Fernanda Rodrigues Martinho Fernandes ◽  
Dernival Bertoncello

This study aimed to identify useful electronic grip dynamometry parameters to track differences between trained (TR) and untrained (UT) participants, and between dominant (DO) and non-dominant (ND) limbs as a consequence of upper limbs muscle fatigue following 10 RM tests of the brachial biceps. This experimental study with transversal design involved 18 young adult males, of whom 9 were untrained and 9 were experienced in resistance training.Isometric grip force was evaluated (30 seconds long) previous and after 10RM tests by means of a G200 Model grip dynamometer with precision load cell (Biometrics(r)). Significant differences between initial and final measurements were found only for trained participants: Peak force for TR-DO (67.1 vs 55.5 kgf, p = .0277); Raw average for TR-DO (46.96 vs 42.22 kgf, p = .0464), and for TR-ND (40.34 vs 36.13 kgf, p = .0277). Electronic grip dynamometry efficiently identified upper limbs fatigue in trained participants, being raw average measurements the best parameter.

Sports ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 30
Author(s):  
Jenny M. Mahoney ◽  
Brett R. Baughman ◽  
Ailish C. Sheard ◽  
Brandon J. Sawyer

The aim of the present study was to assess the validity of verification phase (VP) testing and a 3 min all-out test to determine critical power (CP) in males with obesity. Nine young adult males with a body mass index (BMI) ≥ 30 kg·m−2 completed a cycle ergometer ramp-style VO2max test, four randomized VP tests at 80, 90, 100, and 105% of maximum wattage attained during the ramp test, and a 3 min all-out test. There was a significant main effect for VO2max across all five tests (p = 0.049). Individually, 8 of 9 participants attained a higher VO2max (L/min) during a VP test compared to the ramp test. A trend (p = 0.06) was observed for VO2max during the 90% VP test (3.61 ± 0.54 L/min) when compared to the ramp test (3.37 ± 0.39 L/min). A significantly higher VO2max (p = 0.016) was found in the VP tests that occurred below 130% of CP wattage (N = 15, VO2max = 3.76 ± 0.52 L/min) compared to those that were above (N = 21, VO2max = 3.36 ± 0.41 L/min). Our findings suggest submaximal VP tests at 90% may elicit the highest VO2max in males with obesity and there may be merit in using % of CP wattage to determine optimal VP intensity.


Sign in / Sign up

Export Citation Format

Share Document