scholarly journals Monitoring simplification in plankton communities using different ecological approaches

2019 ◽  
Vol 31 ◽  
Author(s):  
Carla Albuquerque de Souza ◽  
Karine Borges Machado ◽  
João Carlos Nabout ◽  
Daphne Heloisa de Freitas Muniz ◽  
Eduardo Cyrino Oliveira-Filho ◽  
...  

Abstract Aim This study aimed to answer: (i) can phytoplankton communities be used as surrogate of zooplankton communities?; (ii) can we use ecological approaches like functional groups (FG) or morphofunctional classification (MBFG) as surrogate for phytoplankton species?; (iii) can we use substitute groups (cladocera, copepod, rotifer or testate amoebae) as surrogate for zooplankton species?; (iv) are the environmental variables’ ordination standards concordant with the ordering patterns of phytoplankton and zooplankton species?; and (v) for both communities, is the spatial pattern of ordination maintained using density data or presence/absence of individuals or lower taxonomic resolutions? Methods The study was conducted in 25 water bodies that supply central-pivot irrigation in the Federal District - Brazil (Rio Preto Basin), in October 2012. We evaluated some physical and chemical variables as well as phytoplankton and zooplankton samples. To evaluate correlation among biological groups, numerical and higher taxonomic resolutions, we performed some Mantel and Procrustes analyses. Results Evaluating the use of substitute groups, comparisons between phytoplankton and zooplankton, FG and MBFG classifications and almost all the comparisons between zooplankton groups suggested concordant patterns. However, the values of r were low, all below 0.70. Biological analyses with phytoplankton and zooplankton can be performed using presence/absence of individuals without significant loss of information, except for MBFG classification and copepods. Data may also be used at genus or family level for copepods and testate amoebae and only data at genus level for cladocerans and rotifers. Different results were found concerning taxonomic resolution for phytoplankton considering that, while being significant, the r value was less than 0.70. Conclusions For environmental monitoring purposes, it is important to sample both phytoplankton and zooplankton communities because one is not surrogate of the other one, in the same way as phytoplankton density and their functional and morphofunctional approaches. On the other hand, to simplify the environmental monitoring, it is possible to adopt presence/absence species data instead of abundance data for both zooplankton and phytoplankton communities, except for copepods and morphofunctional approach. It is also possible to adopt genera level for zooplankton community and family level for copepods and testate amoebae.

Biologia ◽  
2014 ◽  
Vol 69 (1) ◽  
Author(s):  
Trinh Truong ◽  
Cho Nguyen ◽  
Nguyen-Ngoc Lam ◽  
K. Jensen

AbstractThis study provides a description of mesozooplankton (holo- and meroplankton) abundance, biomass and diversity patterns inside and outside a tropical estuary (Nha Phu Estuary, Khanh Hoa, Viet Nam). In total 185 zooplankton species have been recorded during the study period (2009–2010), copepods contribute with the largest share of species (more than 100), Tunicata with 20, Cnidaria with 17 and Chaetognatha with 9 species. At the most species rich site the number of zooplankton species varies between 55 and 123. The number of species and the annual variation in numbers declines towards the head of the estuary (14–37 species). In contrast, the highest numbers of individuals occur in the inner part of NPE. Calanoids that are the most abundant group of the copepods occur in densities up to 28.2 ind. L−1 (Aug. 9). At ‘Outer NPE’ and ‘Outside NPE’ the maximum density of calanoids is 5.8 and 10.7 ind. L−1, respectively. The declining diversity of zooplankton towards the head of the estuary is also supported by various indices (Shannon’s index, Margalef’s index). A cluster analysis on similarity of species supports a clustering of the inner NPE sites vs the other sites. There is a general separation between the dominant copepod species in the inner (Bestiola sp., Acartia pacifica, Pseudodiaptomus incisus) and outer (Paracalanus gracilis, Acrocalanus gibber, Subeucalanus subcrassus, Oithona rigida, Corycaeus andrewsi, Oithona plumifera) part of the estuary though a few species are common in both areas (Paracalanus crassirostris and Euterpina acutifrons). The zooplankton community at the inner NPE is subjected to more variable hydrographic conditions (salinity in particular) than the communities at the other sites where more stable conditions prevail. A short residence time in the inner part of the estuary due to the tide is supposed to impede a strong horizontal structuring of the zooplankton community.


1987 ◽  
Vol 44 (S1) ◽  
pp. s154-s162 ◽  
Author(s):  
M. H. Holoka ◽  
S. G. Lawrence

An apparatus which draws lake water, either filtered or unaltered, at a preestablished rate through four 40.75 L vessels incubated in situ is described. The system provides facilities for the synchronous addition of experimental liquids such as toxicants. All components are readily transportable. The system is self-powered for periods up to one month depending on the rate of flow chosen. This apparatus provides for the isolation of the zooplankton community from other compartments in the lake, incubation in natural conditions, experimental periods of from 1 to 30 d, maintenance of chosen concentrations of added materials continuously or non-continuously as appropriate, and entry of food organisms with concomitant dilution of wastes and metabolites.The responses of selected zooplankton species or of zooplankton communities to impoundment, manipulation of predator or prey organisms and the addition of nutrient or toxic materials can be assessed as they occur in the naturally varying conditions of a lake environment while the population is being held as a separate and defined part of the whole-lake ecosystem.Methods for the construction and use of the apparatus, and for collection of samples are described. Methods for enumerating organisms in several sizes of subsamples are assessed. Data generated in several experiments are analyzed using standard statistical methods and percent similarity indices.


Author(s):  
Johanna Pokorny

Invasive species are considered the greatest threat to aquatic ecosystem biodiversity. Bythotrephes longimanus, an exotic zooplankton species introduced to North America in the 1980s, is threatening the structure of indigenous aquatic ecosystems as it continues to invade inland Ontario lakes. As a predacious zooplankton species, B. longimanus has been shown to decrease zooplankton abundance, species richness and shift zooplankton community size structure in invaded lakes. However, much of the previous research concerning the predatory effects of B. longimanus has been on surveys of a small number of lakes or has been in controlled mesocosm or lab-based experiments. This study examines the effects of B. longimanus on the zooplankton community using size-structure characterizations (grouping individuals from the community based on size) as community measures for 311 lakes in the Muskoka Region, a highly invaded watershed in Southern Ontario. More specifically, the study explores the size-spectra of invaded versus uninvaded lakes, with reference to an array of environmental lake characteristics (water chemistry, lake morphometry,etc.), and the relevance of B. longimanus activity on the regional scale. By using such a large-scale survey we will be able to appreciate regional-scale effects, as well as encompass the multiple and more indirect trophic interactions that B. longimanus is likely having with the entire aquatic community. (Funding: NSERC & CAISN.)


1999 ◽  
Vol 56 (10) ◽  
pp. 1865-1872 ◽  
Author(s):  
Eva Wahlström ◽  
Erika Westman

In order to study density-dependent effects of invertebrate planktivory, four different densities of Bythotrephes longimanus were inoculated into mesocosm enclosures with a mixed zooplankton community. Changes in size structure and abundance of zooplankton and phytoplankton communities were recorded over a period of 3 weeks. High densities of Bythotrephes were able to reduce total zooplankton abundance, which was mainly due to a decrease in the density of the relatively large species Holopedium gibberum. The density of the smaller species Bosmina longirostris was also reduced with increasing densities of Bythotrephes, whereas rotifer abundance remained largely unaffected. The mean size of Holopedium increased with increasing densities of Bythotrephes. Despite the decrease in total zooplankton biomass in high-Bythotrephes treatments, no effect of Bythotrephes density on primary producers was observed. Our experiment shows that predacious cladocerans may reduce macrozooplankton biomass, large as well as small species. Predation from invertebrate planktivores results in a zooplankton community consisting of larger individuals. Comparing our experimental densities with densities of Bythotrephes found in natural systems suggests that invertebrate planktivores may influence size structure and abundance of zooplankton communities even in lakes with planktivorous fish.


2016 ◽  
Vol 19 (4) ◽  
pp. 35-44
Author(s):  
Phuc Dinh Nguyen ◽  
My Ngoc Diem Tran

Species composition and characteristic of zooplankton communities in treated leachate of Dong Thanh landfills and in Rach Tra river (receiving the wastewater of Dong Thanh landfills) were surveyed monthly from 11/2012 to 04/2013. The results from those two areas were compared to find out the difference of the zooplankton communities. 122 species of 36 genus, 10 classes, 3 phylums and 6 types of larva were identified, of which Rotatoria acounted for 52 %. The result of Cluster analysis showed that there was a distinct difference between the zooplankton community intreated inside the landfills and Rach Tra river. The zooplankton community inside the landfills characterized by low quantity of species but high individual density. The main species composition was Rotatoria and Protozoa with good adaptation of organic and microbiological pollution of water. On the other hand, the zooplankton community in Rach Tra river characterized by communities in natural aquatic habitat with the relative balance of zooplankton groups, diversity index and dominance index were average levels.


2017 ◽  
Vol 29 (0) ◽  
Author(s):  
Ana Caroline de Alcântara Missias ◽  
Leonardo Fernandes Gomes ◽  
Hasley Rodrigo Pereira ◽  
Leo Caetano Fernandes da Silva ◽  
Ronaldo Angelini ◽  
...  

Abstract Aim: In order to contribute to the knowledge about the simplification of biological surveys, this study evaluated the use of substitute groups, numeric and taxonomic resolution for the three main groups of zooplankton (cladocerans, copepods and rotifers) in a Hydropower Plant (UHE). The following issues were addressed: (i) the patterns of spatial and/or temporal ordering generated between each zooplankton group are in concordance? (ii) The concordance is maintained using presence/absence data instead of density data? (iii) The identification of organisms to the species level can be replaced by genus or family level? Methods Samples were taken in seven sample units over five campaigns between 2009 and 2010 in the UHE Serra da Mesa (Goiás, Brazil). To evaluate the correlation between each pair of matrices was used the Mantel test. Results The results demonstrate that the replacements should not be made among the zooplanktonic groups, requiring the monitoring of three groups (copepods, cladocerans and rotifers). Furthermore, the results suggest the use of density data of individuals rather than just presence/absence of species. Finally, the results of this study indicate the possibility to use data at species level instead of data at genus or family level. Conclusion For zooplankton community monitoring purposes only the use of taxonomic resolution showed to be efficient for this area of study, not being recommended the use of surrogate groups or numerical resolution.


2002 ◽  
Vol 62 (3) ◽  
pp. 525-545 ◽  
Author(s):  
E. V. SAMPAIO ◽  
O. ROCHA ◽  
T. MATSUMURA-TUNDISI ◽  
J. G. TUNDISI

The species composition and abundance of the zooplankton community of seven reservoirs of the Paranapanema River, located between 22º37'-23º11'S and 48º55'-50º32'W, were analysed over four periods, in the year of 1979. The zooplankton community was composed of 76 species of Rotifera, 26 species of Cladocera and 7 species of Copepoda. For a large part of the period under study the Rotifera were dominant, followed by Copepoda. The Piraju and Salto Grande reservoirs, which occupy intermediate positions in the cascade of reservoirs, were richest in species, most of them belonging to Rotifera and Cladocera. In the reservoirs Rio Pari and Rio Novo, lateral to the cascade of reservoirs, a lower species richness was observed, although higher densities of organisms were found than in the other reservoirs located in the main river body. Different rotifer species occurred in succession, being abundant in different periods, with no defined pattern. Among the copepods, Thermocyclops decipiens predominated in the majority of the reservoirs. Ceriodaphnia cornuta was the most abundant cladoceran in the intermediate reservoirs of the cascade, and Daphnia gessneri, Bosminopsis deitersi and Moina minuta, in the reservoirs lateral to the cascade. The most frequent zooplankton species were Notodiaptomus conifer, Thermocyclops decipiens, Ceriodaphnia cornuta cornuta and C. cornuta rigaudi, Daphnia gessneri, Bosmina hagmanni, Keratella cochlearis and Polyarthra vulgaris. Some relationships were found between the trophic state of the reservoirs and the zooplankton community.


2004 ◽  
Vol 61 (11) ◽  
pp. 2111-2125 ◽  
Author(s):  
Richard P Barbiero ◽  
Marc L Tuchman

The crustacean zooplankton communities in Lakes Michigan and Huron and the central and eastern basins of Lake Erie have shown substantial, persistent changes since the invasion of the predatory cladoceran Bythotrephes in the mid-1980s. A number of cladoceran species have declined dramatically since the invasion, including Eubosmina coregoni, Holopedium gibberum, Daphnia retrocurva, Daphnia pulicaria, and Leptodora kindti, and overall species richness has decreased as a result. Copepods have been relatively unaffected, with the notable exception of Meso cyclops edax, which has virtually disappeared from the lakes. These species shifts have for the most part been consistent and equally pronounced across all three lakes. Responses of crustacean species to the Bythotrephes invasion do not appear to be solely a consequence of size, and it is likely that other factors, e.g., morphology, vertical distribution, or escape responses, are important determinants of vulnerability to predation. Our results indicate that invertebrate predators in general, and invasive ones in particular, can have pronounced, lasting effects on zooplankton community structure.


2013 ◽  
Vol 25 (4) ◽  
pp. 406-417 ◽  
Author(s):  
Márlon de Castro Vasconcelos ◽  
Adriano Sanches Melo ◽  
Albano Schwarzbold

AIM: We evaluated five stream classification systems observing: 1) differences in richness, abundance and macroinvertebrates communities among stream classes within classification systems; and 2) whether classification systems present better performance using macroinvertebrates. Additionally, we evaluated the effects of taxonomic resolution and data type (abundance and presence) on results. METHODS: Five stream classification systems were used, two based on hydroregions, one based on ecoregions by FEOW, a fourth one based on stream orders and the last one based on clusters of environment variables sampled in 37 streams at Rio Grande do Sul state, Brazil. We used a randomization test to evaluate differences of richness and abundance, a db-MANOVA to evaluate the differences of species assemblages and Classification Strength (CS) to evaluate the classifications performance. RESULTS: There were differences of richness and abundance among stream classes within each stream classification. The same result was found for community data, except for stream order classifications in family level. We observed that stream classes obtained for each stream classification differed in terms of environment variables (db-MANOVA). The classification based on environment variables showed higher CS values than other classification systems. The taxonomic resolution was important to the observed results. Data on genera level presented CS values 12% higher than family level for cluster classification, and the data type was dependent on the classification system and taxonomic resolution employed. CONCLUSION: Our results indicate that classifications based on cluster of environment variables was better than other stream classification systems, and similar results using genera level can be obtained for management programs using family resolution in a geographical context similar to this study.


2000 ◽  
Vol 60 (1) ◽  
pp. 101-111 ◽  
Author(s):  
F. L. do R. M. STARLING

Zooplankton community from six lacustrine ecosystems located in Federal District (Central Brazil) was studied based on samples collected during the dry season (July to September). A total of 71 taxa were recorded: 44 rotifers, 17 cladocerans and 10 copepods. The highest number of zooplankton species was recorded in oligotrophic Bonita Pond (32 species) and the lowest number in hypertrophic waste stabilisation ponds (7 species). This tendency of decreasing the diversity with increasing trophic level was consistent with a cluster analysis of the samples based on Sorensen index of similarity. From the overall similarity dendrogram, two groups of ecosystems were distinguished: one containing the natural ponds Bonita and Formosa and the other comprising the reservoirs Santa Maria, Descoberto and Paranoá. The role of morphometric features in determining the zooplankton community in such lacustrine ecosystems was also discussed.


Sign in / Sign up

Export Citation Format

Share Document