scholarly journals To Signal or Not To Signal: Exploiting Uncertain Real-Time Information in Signaling Games for Security and Sustainability

2020 ◽  
Vol 34 (02) ◽  
pp. 1369-1377
Author(s):  
Elizabeth Bondi ◽  
Hoon Oh ◽  
Haifeng Xu ◽  
Fei Fang ◽  
Bistra Dilkina ◽  
...  

Motivated by real-world deployment of drones for conservation, this paper advances the state-of-the-art in security games with signaling. The well-known defender-attacker security games framework can help in planning for such strategic deployments of sensors and human patrollers, and warning signals to ward off adversaries. However, we show that defenders can suffer significant losses when ignoring real-world uncertainties despite carefully planned security game strategies with signaling. In fact, defenders may perform worse than forgoing drones completely in this case. We address this shortcoming by proposing a novel game model that integrates signaling and sensor uncertainty; perhaps surprisingly, we show that defenders can still perform well via a signaling strategy that exploits uncertain real-time information. For example, even in the presence of uncertainty, the defender still has an informational advantage in knowing that she has or has not actually detected the attacker; and she can design a signaling scheme to “mislead” the attacker who is uncertain as to whether he has been detected. We provide theoretical results, a novel algorithm, scale-up techniques, and experimental results from simulation based on our ongoing deployment of a conservation drone system in South Africa.

Author(s):  
Elizabeth Bondi

In important domains from natural resource conservation to public safety, real-time information is becoming increasingly important. Strategic deployment of security cameras and mobile sensors such as drones can provide real-time updates on illegal activities. To help plan for such strategic deployments of sensors and human patrollers, as well as warning signals to ward off adversaries, the defender-attacker security games framework can be used. Previous works do not consider the combined situation of uncertainty in real-time information in addition to strategically signaling to adversaries. In this thesis, we will not only address this gap, but also improve the overall security result by considering security game models and computer vision algorithms together.


Author(s):  
Yufei Wang ◽  
Zheyuan Ryan Shi ◽  
Lantao Yu ◽  
Yi Wu ◽  
Rohit Singh ◽  
...  

Green Security Games (GSGs) have been proposed and applied to optimize patrols conducted by law enforcement agencies in green security domains such as combating poaching, illegal logging and overfishing. However, real-time information such as footprints and agents’ subsequent actions upon receiving the information, e.g., rangers following the footprints to chase the poacher, have been neglected in previous work. To fill the gap, we first propose a new game model GSG-I which augments GSGs with sequential movement and the vital element of real-time information. Second, we design a novel deep reinforcement learning-based algorithm, DeDOL, to compute a patrolling strategy that adapts to the real-time information against a best-responding attacker. DeDOL is built upon the double oracle framework and the policy-space response oracle, solving a restricted game and iteratively adding best response strategies to it through training deep Q-networks. Exploring the game structure, DeDOL uses domain-specific heuristic strategies as initial strategies and constructs several local modes for efficient and parallelized training. To our knowledge, this is the first attempt to use Deep Q-Learning for security games.


Author(s):  
I.E. Vishnyakov ◽  
I.P. Ivanov ◽  
O.A. Odintsov

The article describes an approach to the numerical analysis of the stability of distributed information systems under a load that varies over time allowing for a short-term load exceeding critical values. Information systems are considered as imperfect queuing systems in which the intensity of the message flow may depend on the size of the queues of applications. Based on this approach, criteria for the stable and unstable behavior of the system under load are formulated, where the stable behavior of the system is understood as the ability of the system to return to its normal mode of operation independently when the external load drops below the critical value, and unstable one when there is the transition to an emergency state. As examples, the most common types of unstable systems are considered, as well as an example of a distributed system that implements a complex queuing system, which, depending on the characteristics of the service, can be either stable or unstable. The analysis of such a system is carried out, which is confirmed by the results of numerical simulation. Based on the analysis results, zones of stability and instability are determined. Features of the implementation of distributed real-time information systems are considered, practical recommendations for the implementation of sustainable information systems are given


Sign in / Sign up

Export Citation Format

Share Document