scholarly journals ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion

2020 ◽  
Vol 34 (03) ◽  
pp. 2774-2781
Author(s):  
Feihu Che ◽  
Dawei Zhang ◽  
Jianhua Tao ◽  
Mingyue Niu ◽  
Bocheng Zhao

We study the task of learning entity and relation embeddings in knowledge graphs for predicting missing links. Previous translational models on link prediction make use of translational properties but lack enough expressiveness, while the convolution neural network based model (ConvE) takes advantage of the great nonlinearity fitting ability of neural networks but overlooks translational properties. In this paper, we propose a new knowledge graph embedding model called ParamE which can utilize the two advantages together. In ParamE, head entity embeddings, relation embeddings and tail entity embeddings are regarded as the input, parameters and output of a neural network respectively. Since parameters in networks are effective in converting input to output, taking neural network parameters as relation embeddings makes ParamE much more expressive and translational. In addition, the entity and relation embeddings in ParamE are from feature space and parameter space respectively, which is in line with the essence that entities and relations are supposed to be mapped into two different spaces. We evaluate the performances of ParamE on standard FB15k-237 and WN18RR datasets, and experiments show ParamE can significantly outperform existing state-of-the-art models, such as ConvE, SACN, RotatE and D4-STE/Gumbel.

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


2021 ◽  
pp. 1-10
Author(s):  
Heng Chen ◽  
Guanyu Li ◽  
Yunhao Sun ◽  
Wei Jiang

Capturing the composite embedding representation of a multi-hop relation path is an extremely vital task in knowledge graph completion. Recently, rotation-based relation embedding models have been widely studied to embed composite relations into complex vector space. However, these models make some over-simplified assumptions on the composite relations, resulting the relations to be commutative. To tackle this problem, this paper proposes a novel knowledge graph embedding model, named QuatGE, which can provide sufficient modeling capabilities for complex composite relations. In particular, our method models each relation as a rotation operator in quaternion group-based space. The advantages of our model are twofold: (1) Since the quaternion group is a non-commutative group (i.e., non-Abelian group), the corresponding rotation matrices of composite relations can be non-commutative; (2) The model has a more expressive setting with stronger modeling capabilities, which is flexible to model and infer the complete relation patterns, including: symmetry/anti-symmetry, inversion and commutative/non-commutative composition. Experimental results on four benchmark datasets show that the proposed method outperforms the existing state-of-the-art models for link prediction, especially on composite relations.


Author(s):  
Wanhua Cao ◽  
Yi Zhang ◽  
Juntao Liu ◽  
Ziyun Rao

Knowledge graph embedding improves the performance of relation extraction and knowledge reasoning by encoding entities and relationships in low-dimensional semantic space. During training, negative samples are usually constructed by replacing the head/tail entity. And the different replacing relationships lead to different accuracy of the prediction results. This paper develops a negative triplets construction framework according to the frequency of relational association entities. The proposed construction framework can fully consider the quantitative of relations and entities in the dataset to assign the proportion of relation and entity replacement and the frequency of the entities associated with each relationship to set reasonable proportions for different relations. To verify the validity of the proposed construction framework, it is integrated into the state-of-the-art knowledge graph embedding models, such as TransE, TransH, DistMult, ComplEx, and Analogy. And both the evaluation criteria of relation prediction and entity prediction are used to evaluate the performance of link prediction more comprehensively. The experimental results on two commonly used datasets, WN18 and FB15K, show that the proposed method improves entity link and triplet classification accuracy, especially the accuracy of relational link prediction.


2021 ◽  
Author(s):  
Shensi Wang ◽  
Kun Fu ◽  
Xian Sun ◽  
Zequn Zhang ◽  
Shuchao Li ◽  
...  

2021 ◽  
Author(s):  
Rogini Runghen ◽  
Daniel B Stouffer ◽  
Giulio Valentino Dalla Riva

Collecting network interaction data is difficult. Non-exhaustive sampling and complex hidden processes often result in an incomplete data set. Thus, identifying potentially present but unobserved interactions is crucial both in understanding the structure of large scale data, and in predicting how previously unseen elements will interact. Recent studies in network analysis have shown that accounting for metadata (such as node attributes) can improve both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, the dimension of the object we need to learn to predict interactions in a network grows quickly with the number of nodes. Therefore, it becomes computationally and conceptually challenging for large networks. Here, we present a new predictive procedure combining a graph embedding method with machine learning techniques to predict interactions on the base of nodes' metadata. Graph embedding methods project the nodes of a network onto a---low dimensional---latent feature space. The position of the nodes in the latent feature space can then be used to predict interactions between nodes. Learning a mapping of the nodes' metadata to their position in a latent feature space corresponds to a classic---and low dimensional---machine learning problem. In our current study we used the Random Dot Product Graph model to estimate the embedding of an observed network, and we tested different neural networks architectures to predict the position of nodes in the latent feature space. Flexible machine learning techniques to map the nodes onto their latent positions allow to account for multivariate and possibly complex nodes' metadata. To illustrate the utility of the proposed procedure, we apply it to a large dataset of tourist visits to destinations across New Zealand. We found that our procedure accurately predicts interactions for both existing nodes and nodes newly added to the network, while being computationally feasible even for very large networks. Overall, our study highlights that by exploiting the properties of a well understood statistical model for complex networks and combining it with standard machine learning techniques, we can simplify the link prediction problem when incorporating multivariate node metadata. Our procedure can be immediately applied to different types of networks, and to a wide variety of data from different systems. As such, both from a network science and data science perspective, our work offers a flexible and generalisable procedure for link prediction.


2020 ◽  
Author(s):  
Quan Do ◽  
Pierre Larmande

AbstractCandidate genes prioritization allows to rank among a large number of genes, those that are strongly associated with a phenotype or a disease. Due to the important amount of data that needs to be integrate and analyse, gene-to-phenotype association is still a challenging task. In this paper, we evaluated a knowledge graph approach combined with embedding methods to overcome these challenges. We first introduced a dataset of rice genes created from several open-access databases. Then, we used the Translating Embedding model and Convolution Knowledge Base model, to vectorize gene information. Finally, we evaluated the results using link prediction performance and vectors representation using some unsupervised learning techniques.


2020 ◽  
Vol 34 (05) ◽  
pp. 9612-9619
Author(s):  
Zhao Zhang ◽  
Fuzhen Zhuang ◽  
Hengshu Zhu ◽  
Zhiping Shi ◽  
Hui Xiong ◽  
...  

The rapid proliferation of knowledge graphs (KGs) has changed the paradigm for various AI-related applications. Despite their large sizes, modern KGs are far from complete and comprehensive. This has motivated the research in knowledge graph completion (KGC), which aims to infer missing values in incomplete knowledge triples. However, most existing KGC models treat the triples in KGs independently without leveraging the inherent and valuable information from the local neighborhood surrounding an entity. To this end, we propose a Relational Graph neural network with Hierarchical ATtention (RGHAT) for the KGC task. The proposed model is equipped with a two-level attention mechanism: (i) the first level is the relation-level attention, which is inspired by the intuition that different relations have different weights for indicating an entity; (ii) the second level is the entity-level attention, which enables our model to highlight the importance of different neighboring entities under the same relation. The hierarchical attention mechanism makes our model more effective to utilize the neighborhood information of an entity. Finally, we extensively validate the superiority of RGHAT against various state-of-the-art baselines.


Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 12 ◽  
Author(s):  
Guangluan Xu ◽  
Xiaoke Wang ◽  
Yang Wang ◽  
Daoyu Lin ◽  
Xian Sun ◽  
...  

Link prediction is a task predicting whether there is a link between two nodes in a network. Traditional link prediction methods that assume handcrafted features (such as common neighbors) as the link’s formation mechanism are not universal. Other popular methods tend to learn the link’s representation, but they cannot represent the link fully. In this paper, we propose Edge-Nodes Representation Neural Machine (ENRNM), a novel method which can learn abundant topological features from the network as the link’s representation to promote the formation of the link. The ENRNM learns the link’s formation mechanism by combining the representation of edge and the representations of nodes on the two sides of the edge as link’s full representation. To predict the link’s existence, we train a fully connected neural network which can learn meaningful and abundant patterns. We prove that the features of edge and two nodes have the same importance in link’s formation. Comprehensive experiments are conducted on eight networks, experiment results demonstrate that the method ENRNM not only exceeds plenty of state-of-the-art link prediction methods but also performs very well on diverse networks with different structures and characteristics.


Sign in / Sign up

Export Citation Format

Share Document