scholarly journals A Multi-Scale Approach for Graph Link Prediction

2020 ◽  
Vol 34 (04) ◽  
pp. 3308-3315 ◽  
Author(s):  
Lei Cai ◽  
Shuiwang Ji

Deep models can be made scale-invariant when trained with multi-scale information. Images can be easily made multi-scale, given their grid-like structures. Extending this to generic graphs poses major challenges. For example, in link prediction tasks, inputs are represented as graphs consisting of nodes and edges. Currently, the state-of-the-art model for link prediction uses supervised heuristic learning, which learns graph structure features centered on two target nodes. It then learns graph neural networks to predict the existence of links based on graph structure features. Thus, the performance of link prediction models highly depends on graph structure features. In this work, we propose a novel node aggregation method that can transform the enclosing subgraph into different scales and preserve the relationship between two target nodes for link prediction. A theory for analyzing the information loss during the re-scaling procedure is also provided. Graphs in different scales can provide scale-invariant information, which enables graph neural networks to learn invariant features and improve link prediction performance. Our experimental results on 14 datasets from different areas demonstrate that our proposed method outperforms the state-of-the-art methods by employing multi-scale graphs without additional parameters.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Meng Zhang ◽  
Li Liang ◽  
Lin Liu ◽  
Ming-Jing Tang

Graph neural networks (GNNs), as a branch of deep learning in non-Euclidean space, perform particularly well in various tasks that process graph structure data. With the rapid accumulation of biological network data, GNNs have also become an important tool in bioinformatics. In this research, a systematic survey of GNNs and their advances in bioinformatics is presented from multiple perspectives. We first introduce some commonly used GNN models and their basic principles. Then, three representative tasks are proposed based on the three levels of structural information that can be learned by GNNs: node classification, link prediction, and graph generation. Meanwhile, according to the specific applications for various omics data, we categorize and discuss the related studies in three aspects: disease prediction, drug discovery, and biomedical imaging. Based on the analysis, we provide an outlook on the shortcomings of current studies and point out their developing prospect. Although GNNs have achieved excellent results in many biological tasks at present, they still face challenges in terms of low-quality data processing, methodology, and interpretability and have a long road ahead. We believe that GNNs are potentially an excellent method that solves various biological problems in bioinformatics research.


Author(s):  
Shu Wu ◽  
Yuyuan Tang ◽  
Yanqiao Zhu ◽  
Liang Wang ◽  
Xing Xie ◽  
...  

The problem of session-based recommendation aims to predict user actions based on anonymous sessions. Previous methods model a session as a sequence and estimate user representations besides item representations to make recommendations. Though achieved promising results, they are insufficient to obtain accurate user vectors in sessions and neglect complex transitions of items. To obtain accurate item embedding and take complex transitions of items into account, we propose a novel method, i.e. Session-based Recommendation with Graph Neural Networks, SR-GNN for brevity. In the proposed method, session sequences are modeled as graphstructured data. Based on the session graph, GNN can capture complex transitions of items, which are difficult to be revealed by previous conventional sequential methods. Each session is then represented as the composition of the global preference and the current interest of that session using an attention network. Extensive experiments conducted on two real datasets show that SR-GNN evidently outperforms the state-of-the-art session-based recommendation methods consistently.


2020 ◽  
Author(s):  
Yuyao Yang ◽  
Shuangjia Zheng ◽  
Shimin Su ◽  
Jun Xu ◽  
Hongming Chen

Fragment based drug design represents a promising drug discovery paradigm complimentary to the traditional HTS based lead generation strategy. How to link fragment structures to increase compound affinity is remaining a challenge task in this paradigm. Hereby a novel deep generative model (AutoLinker) for linking fragments is developed with the potential for applying in the fragment-based lead generation scenario. The state-of-the-art transformer architecture was employed to learn the linker grammar and generate novel linker. Our results show that, given starting fragments and user customized linker constraints, our AutoLinker model can design abundant drug-like molecules fulfilling these constraints and its performance was superior to other reference models. Moreover, several examples were showcased that AutoLinker can be useful tools for carrying out drug design tasks such as fragment linking, lead optimization and scaffold hopping.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


2020 ◽  
Vol 34 (07) ◽  
pp. 11693-11700 ◽  
Author(s):  
Ao Luo ◽  
Fan Yang ◽  
Xin Li ◽  
Dong Nie ◽  
Zhicheng Jiao ◽  
...  

Crowd counting is an important yet challenging task due to the large scale and density variation. Recent investigations have shown that distilling rich relations among multi-scale features and exploiting useful information from the auxiliary task, i.e., localization, are vital for this task. Nevertheless, how to comprehensively leverage these relations within a unified network architecture is still a challenging problem. In this paper, we present a novel network structure called Hybrid Graph Neural Network (HyGnn) which targets to relieve the problem by interweaving the multi-scale features for crowd density as well as its auxiliary task (localization) together and performing joint reasoning over a graph. Specifically, HyGnn integrates a hybrid graph to jointly represent the task-specific feature maps of different scales as nodes, and two types of relations as edges: (i) multi-scale relations capturing the feature dependencies across scales and (ii) mutual beneficial relations building bridges for the cooperation between counting and localization. Thus, through message passing, HyGnn can capture and distill richer relations between nodes to obtain more powerful representations, providing robust and accurate results. Our HyGnn performs significantly well on four challenging datasets: ShanghaiTech Part A, ShanghaiTech Part B, UCF_CC_50 and UCF_QNRF, outperforming the state-of-the-art algorithms by a large margin.


2021 ◽  
pp. 1-16
Author(s):  
Hiromi Nakagawa ◽  
Yusuke Iwasawa ◽  
Yutaka Matsuo

Recent advancements in computer-assisted learning systems have caused an increase in the research in knowledge tracing, wherein student performance is predicted over time. Student coursework can potentially be structured as a graph. Incorporating this graph-structured nature into a knowledge tracing model as a relational inductive bias can improve its performance; however, previous methods, such as deep knowledge tracing, did not consider such a latent graph structure. Inspired by the recent successes of graph neural networks (GNNs), we herein propose a GNN-based knowledge tracing method, i.e., graph-based knowledge tracing. Casting the knowledge structure as a graph enabled us to reformulate the knowledge tracing task as a time-series node-level classification problem in the GNN. As the knowledge graph structure is not explicitly provided in most cases, we propose various implementations of the graph structure. Empirical validations on two open datasets indicated that our method could potentially improve the prediction of student performance and demonstrated more interpretable predictions compared to those of the previous methods, without the requirement of any additional information.


2021 ◽  
Vol 27 (9) ◽  
pp. 407-412
Author(s):  
Seolhee Jeon ◽  
Kwang Hee Lee ◽  
Myoung Ho Kim

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dejun Jiang ◽  
Zhenxing Wu ◽  
Chang-Yu Hsieh ◽  
Guangyong Chen ◽  
Ben Liao ◽  
...  

AbstractGraph neural networks (GNN) has been considered as an attractive modelling method for molecular property prediction, and numerous studies have shown that GNN could yield more promising results than traditional descriptor-based methods. In this study, based on 11 public datasets covering various property endpoints, the predictive capacity and computational efficiency of the prediction models developed by eight machine learning (ML) algorithms, including four descriptor-based models (SVM, XGBoost, RF and DNN) and four graph-based models (GCN, GAT, MPNN and Attentive FP), were extensively tested and compared. The results demonstrate that on average the descriptor-based models outperform the graph-based models in terms of prediction accuracy and computational efficiency. SVM generally achieves the best predictions for the regression tasks. Both RF and XGBoost can achieve reliable predictions for the classification tasks, and some of the graph-based models, such as Attentive FP and GCN, can yield outstanding performance for a fraction of larger or multi-task datasets. In terms of computational cost, XGBoost and RF are the two most efficient algorithms and only need a few seconds to train a model even for a large dataset. The model interpretations by the SHAP method can effectively explore the established domain knowledge for the descriptor-based models. Finally, we explored use of these models for virtual screening (VS) towards HIV and demonstrated that different ML algorithms offer diverse VS profiles. All in all, we believe that the off-the-shelf descriptor-based models still can be directly employed to accurately predict various chemical endpoints with excellent computability and interpretability.


Sign in / Sign up

Export Citation Format

Share Document